Colloquia

Talks given by high profile astronomers and scientists.


Video
Thursday February 9, 2017
Prof. Conny Aerts
KU Leuven

Abstract

After a basic introduction into asteroseismology for the non-expert, we emphasize how to achieve practical applications of the technique based on uninterrupted high-precision data from space. We show how series of detected and identified oscillation modes allow to deduce details of the interior physics of stars that are impossible to unravel in any other way. We highlight the most recent findings on the interior rotation and chemical mixing of stars with a convective core and illustrate how these affect stellar evolution theory. We reveal the power of combining Gaia and asteroseismic data for stellar physics, galactic archeology, and exoplanet studies. Finally, we provide an outlook for future projects in asteroseismology to illustrate the bright future of this research domain.


Video
Thursday October 13, 2016
Prof. Roger Barry
University of Colorado

Abstract

Global snow and ice cover (the "cryosphere") plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback.  Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and sea ice extent are discussed.


Video
Thursday November 12, 2015
Prof. Eiichiro Komatsu
Max Planck Institute for Astrophysics (MPA, Garching, Germany)

Abstract

The Cosmic Microwave Background (CMB), the fossil light of the BigBang, is the oldest light that one can ever hope to observe in ourUniverse. The CMB provides us with a direct image of the Universe whenit was still an "infant" - 380,000 years old - and has enabled us to obtaina wealth of cosmological information, such as the composition, age,geometry, and history of the Universe. Yet, can we go further and learnabout the primordial universe, when it was much younger than 380,000years old, perhaps as young as a tiny fraction of a second? If so, thisgives us a hope to test competing theories about the origin of theUniverse at ultra high energies. In this talk I present the results from theWilkinson Microwave Anisotropy Probe (WMAP) satellite that Icontributed, and then discuss the recent results from the Plancksatellite (in which I am not involved). Finally, I discuss future prospectson ourquest to probe the physical condition of the very early Universe.


Video
Thursday October 8, 2015
Prof. Joop Schaye
Univ. of Leiden

Abstract

The realism of hydrodynamical simulations of the formation and evolution of galaxies has improved considerably in recent years. I will try to give some insight into the reasons behind this success, focusing in particular on the importance of subgrid models and the associated limitations. I will also present recent results from the cosmological EAGLE simulations as well as from higher-resolution simulations of individual galaxies.


Video
Thursday September 10, 2015
Prof. Noah Soker
Physics Department TECHNION, Israel

Abstract

I will describe the roles of jets in several quite different astrophysical systems. These include exploding core collapse supernovae, expelling common envelopes, and heating gas in clusters of galaxies. Hot bubbles inflated by jets seem to be a key ingredient in the interaction of jets with the ambient gas. The understanding that jets can efficiently interact with the ambient gas leads to new notions, such as the jittering jets model to explode massive stars, and the grazing envelope evolution(GEE) that can replace the common envelope evolution in some cases.

Video
Tuesday March 17, 2015
Prof. Malcolm Longair
University of Cambridge, UK

Abstract

Divulgation Lecture to Celebrate the International Year of Light and 150th Anniversary of Maxwell´s great paper on Electromagnetism of 1865.


Video
Thursday March 12, 2015
Prof. Annette Ferguson
Royal Astronomical Observatory of Edinburgh, UK

Abstract

Evidence is mounting for the presence of complex low surface brightness structures in the outer regions of galaxies. While the most spectacular examples are provided by systems hosting coherent debris streams, the most common examples may be extremely diffuse stellar envelopes. Wide-field imagers on large telescopes are allowing us to quantitatively explore the resolved stellar populations in these components within and well beyond the Local Group. I will highlight some recent  results from our work and discuss the insight these outer structures provide on understanding massive  galaxy assembly.  I will also discuss how we are using deep HST studies of M31's outer regions to probe its evolutionary history in unprecedented detail.


Video
Thursday October 30, 2014
Prof. Eline Tolstoy
Kaptein Astronomical Intistute

Abstract

I will talk about how resolved stellar populations in the nearby Local Group dwarf galaxies have been used to study the detailed chemical, kinematic and star formation history of these systems and the link to the properties of the Milky Way. I will mainly discuss the results from the DART spectroscopic surveys of nearby dwarf spheroidal galaxies, determining detailed abundances, looking for CEMP stars and also combining spectroscopy with colour-magnitude diagram analysis to measure the time scale for star formation and chemical evolution.

 




Video
Thursday October 23, 2014
Prof. Sara Seager
MIT

Abstract

The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy?the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases? Gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established.


Video
Thursday October 9, 2014
Dr. Eva Grebel
Director Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg

Abstract

Dwarf galaxies are the most common type of galaxy in the Universe andinclude the most dark-matter-dominated objects known. They offerintriguing insights into evolutionary processes at low halo masses and low metallicities. Moreover, as survivors of a once much more numerous population of building blocks of larger galaxies, they are key to understanding very early star formation processes. The Local Group and particularly the Milky Way's dwarf galaxy entourage offer us the unique possibility to compare in detail dwarf and Galactic populations. This is an important step towards quantifying the magnitude and time scales of dwarf contributions to the build-up of the Milky Way and allows us to test predictions of cosmological theories and hierarchical structure formation.



Upcoming talks

Featured talks