Found 127 talks archived in Stars

AMnQBLJEJzE-thumbnail
Thursday October 13, 2022
Dr. Alexey Bobrick
Technion University, Israel

Abstract

Exciting things may have happened sometimes to the stars we see in the sky today. For example, Betelgeuse, also known as Alpha-Ori, an M-type red supergiant, the 10th brightest sky in the sky (usually), may well have been a binary star in the past. Its rapid rotation, peculiarly large Galactic velocity, and unusual chemical abundances all point to it being kicked out from the birth environment and merging as a binary star. By comparing a Monte-Carlo stellar cluster population model with the observed populations of Galactic O- and B- type stars (progenitors of red supergiants), I will show that the story of Betelgeuse is not at all uncommon. In distant galaxies, closely related scenarios may give rise to peculiar core-collapse supernovae. I will conclude by briefly discussing how the diversity of such binary and triple stellar evolution histories reflects in the variety of the currently discovered core-collapse supernovae.


jKmifm17bno-thumbnail
Tuesday September 20, 2022
Dr. Asif ud-Doula
Penn State University

Abstract

Massive stars (at least eight times as massive as the Sun) possess strong stellar winds driven by radiation. With the advent of the so called MiMeS collaboration, an increasing number of these massive stars have been confirmed to have global magnetic fields. Such magnetic fields can have significant influence on the dynamics of these stellar winds which are strongly ionized. Such interaction of the wind and magnetic field can generate copious amount of X-rays, they can spin the star down, they can also help form large scale disk-like structures. In this presentation I will discuss the nature of such radiatively-driven winds and how they interact with magnetic fields.

https://youtu.be/jKmifm17bno


sTGVQVoYfOg-thumbnail
Tuesday April 5, 2022
Prof. Brian Welsch
University de Wisconsin

Abstract

On the Sun, the presence of magnetic flux at the photosphere is closely linked to (1) steady heating of the overlying atmosphere and (2) transient brightenings, the largest of which are flares.   I will discuss statistical properties of both phenomena, with an emphasis on aspects of each that might apply to other astrophysical objects, such as other stars or stellar remnants, and perhaps AGNs.  Regarding heating, power-law scalings have been found to relate magnetic flux with steady coronal emission in both soft X-ray (SXR) and EUV ranges.  A key observation is that the details of magnetic structure (field strengths and their spatial gradients, including measured electric currents) appear not to affect heating rates. Similar SXR scalings have been reported for G,K, and M dwarfs and classical T-Tauri stars.  Departures from such scalings, whether on the Sun, other stars, or other objects, might reveal important aspects of the heating mechanisms that drive steady emission, and should be sought.   Regarding flaring, again a power-law scaling between magnetic flux and flare SXR emission has been found, but with a different exponent.  Differences in these scalings suggest that steady heating fundamentally differs from flare heating, disfavoring the “nanoflare” hypothesis (i.e., that steady coronal heating arises from many weak, unresolved flares that are essentially scaled-down versions of larger flares).  Analogous differences in the scalings of steady vs. flaring luminosities with magnetic flux on other objects could constrain processes driving each type of emission.  Another key property of flares is that they extract energy from the magnetic field, which in the solar case leads to measurable changes in field strengths after flares – photospheric field strengths tend to increase, coronal fields tend to decrease.  It is possible that analogous changes could be observed on other stars or objects (via, e.g., Zeeman or synchrotron  methods). 



ShJUS-1y-iA-thumbnail
Thursday February 24, 2022
Dr. Diego Godoy-Rivera
IAC

Abstract

Rotation plays an important role in the life of stars and offers a potential diagnostic to infer their ages and that of their planets. This idea is known as gyrochronology, and if properly calibrated, its applications to Galactic, stellar, and exoplanetary astrophysics would be far-reaching. Nevertheless, while potentially fruitful over a wide range of ages and masses, recent results have raised concerns regarding gyrochronology’s applicability. In this talk, I will present the opportunities that the Gaia astrometry has opened to address these issues. First, regarding rotation’s classical calibrators, I will illustrate the impact that removing the non-member contamination has on the rotational sequences of open clusters. Second, I will present a novel method that tests the state-of-the-art gyrochronology relations in under-explore domains using wide binary stars. Finally, I will discuss the prospects for expanding the existing rotational constraints in unprecedented regimes using data from the TESS mission.


apZcphg11CU-thumbnail
Thursday January 27, 2022
Prof. Axel Brandenburg
Nordita (Sweden)

Abstract

Following Cowling's anti-dynamo theorem of 1933, there was a long period during which the very existence of dynamos was unclear. Even with the emergence of three dimensional simulations in the late 1980s, people were careful to distinguish true dynamos from just some sort of amplification. Meanwhile, we know of many examples of true dynamos - not only from simulations, but also from several laboratory experiments. Nevertheless, there are still problems, fundamental ones and also very practical ones. After all, we are really not sure how the solar dynamo works. Today, global three-dimensional simulations seem to have an easier time to reproduce the behaviors of superactive stars, but not really the group of inactive stars, to which also the Sun belongs. The Sun itself may actually be special; it has so well defined cycles and it is at the brink of becoming very different. Theoretically, slightly slower rotators should have antisolar rotation, but it is possible that some of those stars never become that slow if stellar breaking ceases for some reason. Sun and starspots are very evident indicators of solar and stellar activity. Their formation is also not well understood. Polarimetry reveals their magnetic helicity, which can be detected even with the solar wind.


UBJgoEWw1tc-thumbnail
Tuesday January 25, 2022
Drs. Sarah Martell
Australian National University

Abstract

The field of Galactic archaeology has been very active in recent years, with a major influx of data from the Gaia satellite and large spectroscopic surveys. The major science questions in the field include Galactic structure and dynamics, the accretion history of the Milky Way, chemical tagging, and age-abundance relations. I will give an overview of GALAH as a large spectroscopic survey, and describe how it is complementary to other ongoing and future survey projects. I will also discuss recent science highlights from the GALAH team and compelling questions for future work.


dFCvDd7Ddiw-thumbnail
Tuesday December 14, 2021
Dr. Santi Cassisi
INAF

Abstract

Galactic globular clusters have always been at the crossroad of several investigations
in both Stellar and Galactic Astrophysics. For long time, they have been considered
the prototypes of Simple Stellar Populations, and hence used for testing and calibrating
stellar evolutionary models as well as population synthesis tools. Nowadays, after the 
discovery of the presence of multiple stellar populations in almost all Galactic GCs, we know
that this assumption is no longer valid. The process(es) of formation and early evolution 
of these star clusters is (are) very far to be understood, and any scenario so far envisaged is
severely challenged by the pletora of empirical evidence collected till now. In the same time,
thanks to the availability of an impressive observational framework - collected by combining
kinematic measurements from Gaia mission, with data provided by large spectroscopic and 
photometric surveys -, GCs are playing a crucial role for our understanding of the
assembly history of the Milky Way.
We will review our present knowledge about these important stellar systems, discussing the 
several, open issues related to their formation/evolution, and discuss how we can use them
in our effort to depict the Milky Way assembly history.

F4XBYrxsrC8-thumbnail
Tuesday November 23, 2021
Dr. Dainis Dravins
Lund Observatory (Sweden)

Abstract

The new generation of spectrometers designed for extreme precision radial velocities enable correspondingly precise stellar spectroscopy. It is now fruitful to theoretically explore what the information content would be if stellar spectra could be studied with spectral resolutions of a million or more, and to deduce what signatures remain at lower resolutions. Hydrodynamic models of stellar photospheres predict how line profiles shapes, asymmetries, and convective wavelength shifts vary from disk center to limb. Corresponding high-resolution spectroscopy across spatially resolved stellar disks is now practical using differential observations during exoplanet transits, thus enabling the testing of such models. A most demanding task is to understand and to model spectral microvariability toward the radial-velocity detection of also low-mass planets in Earth-like orbits around solar-type stars. Observations of the Sun-as-a-star with extreme precision spectrometers now permit searches for spectral-line modulations on the level of a part in a thousand or less, feasible to test against hydrodynamic models of various solar features.


yJHMQFmLsGE-thumbnail
Tuesday July 6, 2021
Prof. Norbert Langer
University of Bonn

Abstract

Massive stars are generally fast rotators, however, with significant dispersion. We discuss the hypothesis that all OB stars are all born with very similar spins, with slower and faster rotators being produced by close binary evolution. We review supporting evidence from recent observations of young and rich star clusters, from OB star surveys, and from dense grids of detailed binary evolution models. We connect the OB star spins with the likelihood of evolved/compact binary companions, and with the variety of the explosive end states of massive stars.

 

Youtube: https://youtu.be/yJHMQFmLsGE


FJ5G3U4JK6g-thumbnail
Tuesday June 8, 2021
Dr. Hector Socas-Navarro
IAC

Abstract

In this talk I'll present results from a recent paper in which we have developed a new analysis technique for solar spectra based on artificial neural networks. Our first test applications yielded some unexpected and interesting results. The fine-scale network of temperature enhancements in the quiet middle and upper photosphere have a reversed pattern. Hot pixels in the middle photosphere, possibly associated with small-scale magnetic elements, appear cool at higher levels (log(tau)=-3 and -4), and vice versa. We also find hot arcs on the limb side of magnetic pores, which we interpret as the first direct observational evidence of the "hot wall" effect. Hot walls are a prediction of theoretical models from the 1970s which had not been observed until now.