Found 108 talks archived in Stars

Thursday January 12, 2012
Dr. Javier Alonso-García
Universidad Pontificia de Chile, Chile


A serious limitation in the study of the Galactic inner halo and bulge globular clusters has been the existence of large and differential extinction by foreground dust. We have mapped the differential extinction and removed its effects, using a new dereddening technique, in a sample of 25 clusters in the direction of the inner Galaxy, observed in the optical using the Magellan 6.5m telescope and the Hubble Space Telescope. We have also observed a sample of 33 inner Galactic globular clusters in the framework of the VVV survey that is currently being conducted with the new Vista 4m telescope, in infrared bands where the extinction is highly reduced. Using these observations we have produced high quality color-magnitude diagrams of these poorly studied clusters that allow us to determine these clusters relative ages, distances and chemistry more accurately and to address important questions about the formation and the evolution of the inner Galaxy.

Tuesday December 20, 2011
Dr. Nancy Elías de la Rosa
IEEC, Spain


Supernovae are at the heart of some of the most important problems of modern astronomy. To fully understand their importance and to enable their use as probes of stellar evolution throughout cosmic time, it is
absolutely essential to determine their stellar origins, i.e., their progenitors or progenitor systems. Even with over 5600 known SNe, we have only direct information about the progenitor star for a handful of explosions. Based on the statistics of 20 SNe II-P for which progenitors have been isolated or upper mass limits established, it has been derived a
more limited range of 8-17 solar masses for these stars, and it appears that all of these progenitors exploded in the RSG phase, as we would theoretically expect. However there has been no detection of a higher mass stars in the range 20-40 solar masses, which should be the most luminous and brightest stars in these galaxies. Therefore, I will present here the
results of our group in the analysis of Hubble Space Telescope (HST) and deep ground-based images, isolating the massive progenitor stars of several recent core-collapse supernovae.

Thursday December 15, 2011
Dr. Miguel Ángel Aloy
University of Valencia, Spain


Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae (Woosley et al. 2006). They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium (Zhang et al. 2004). Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to 1.6 Gpc by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a helium star-neutron star merger that underwent a common envelope phase expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which gets thermalized by interacting with the dense, previously ejected material and thus creating the observed black-body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy (Campana et al. 2011).

Thursday November 24, 2011
Dr. Maritza A. Lara-Lopez
Australian Astronomical Observatory, Australia


To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by Metallicity, Star Formation Rate (SFR), and stellar mass of galaxies. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of these parameters provides important constraints for the galaxy evolution models. We studied the relationships and dependencies between the SFR, stellar mass, and gas metallicity of star forming galaxies from the Sloan Digital Sky Survey-Data Release 7 (SDSS DR7) and Galaxy and Mass Assembly (GAMA) surveys. We have combined both surveys finding evidence of SFR and metallicity evolution for galaxies down to redshift ~0.2. Also, we have proved the existence of a Fundamental Plane in the 3D space formed by the SFR, mass and metallicity for the SDSS and GAMA samples.

Monday September 12, 2011
Dr. Marc Balcells
Isaac Newton Group of Telescopes, Spain


The vision for the use of the WHT in the coming decade is taking shape.   A key element is the construction and deployment of WEAVE, a wide-field massive-multiplex spectrograph.  With 1000 fibres and spectral resolutions of 5000 and 20000, the opportunities for discovery are tremendous.  Three key fields will be: Milky-Way and Local Group archaeology linked to the   Gaia mission; cosmology redshift surveys; and galaxy evolution studies linked to photometric surveys such as VISTA, UKIDSS, LOFAR, EUCLID, and  others. IAC has the opportunity to get involved in this important instrument for ORM from the beginning.

Tuesday July 26, 2011
Dr. Katrien Uytterhoeven
Instituto de Astrofísica de Canarias, Spain


The Kepler spacecraft is providing photometric time series with micromagnitude precision for thousands of variable stars. The continuous time-series of unprecedented timespan open up the opportunity to study the pulsational variability in much more detail than was previously possible from the ground. We present a first general characterization of the variability of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate variable A-F type stars, and investigate the relation between gamma Doradus, delta Scuti, and hybrid stars. Our results suggest a revision of the current observational instability strips, and imply an investigation of pulsation mechanisms to drive hybrid pulsations.

Thursday June 23, 2011
Dr. Patrick Gaulme
Institut d'Astrophysique Spatiale; Université Paris Sud, Paris, France


At the end of 2008, on ideas of teams from the Observatoire de la Côte d’Azur (OCA) and IAC, the CoRoT satellite observed the star HD 46375, known to host a non-transiting Saturn-mass exoplanet with a 3.023 day period. HD 46375 is the brightest star with a known close-in planet in the CoRoT accessible field of view. As such, it was targeted by the CoRoT additional program and observed in a CCD normally dedicated to the asteroseismology program, to obtain an ultra-precise photometric lightcurve and detect or place upper limits on the brightness of the planet. In addition, a ground-based support was simultaneously performed with the high-resolution NARVAL spectro-polarimeter to constrain the stellar atmospheric and magnetic properties. In this seminar, I will present the main results, in particular the stellar constrain we obtained thanks to the detection of the oscillation mode signature and the plausible detection of the planetary signal, which, if confirmed with future observations, would be the first detection of phase changes in the visible for a non-transiting planet.

Tuesday June 21, 2011
Miss Karla Yulién Peña Ramírez
Instituto de Astrofísica de Canarias


The proper characterization of the least massive population of the young Sigma Orionis star cluster is required to understand the form of the cluster mass function and its impact on our comprehension of the substellar formation processes. SOri70 (T5.5±1) and SOri73, two T-type cluster member candidates, would have likely masses between 3 and 7 MJup if their age is 3 Myr. SOri73 awaits confirmation of its methane atmosphere. Here I present the results of a search of T-type objects in an area of ~120 arcmin^2 in the Sigma Orionis cluster, the confirmation of the presence of methane absorption in SOri73 and the study of SOri70 and 73 cluster membership via photometric colors and accurate proper motion analysis. This results would have a dramatic impact in the cluster mass function, in one of the scenarios explored, they suggest a decrease in cluster members with planetary masses in the interval 3.5-6 Mjup.

Friday June 17, 2011
Dr. Mauro D'Onofrio
University of Padova, Italy


We present the K band FP of the ETGs members of the clusters observed by the WINGS survey. The data confirm a different tilt of the FP with respect to the V solution and the presence of a substantial tilt in the K band. This led us to further investigate the hypothesis that ETG non-homology greatly contribute to the tilt of the FP.

The WINGS data show that there are now several evidence of both structural and dynamical non-homology for the class of ETGs. Among these we will discuss in detail the tight relation between the mass of the ETGs, their stellar mass-to-light ratio M/L, and the Sersic index n describing the shape of their light profiles. We guess through a series of mock simulations that this relation acts as a fine-tuning that keeps small the scatter around the FP. We therefore conclude that ETG non-homology is closely connected either with the problem of the tilt and with the small scatter around the FP.

Monday June 13, 2011
Mr. Héctor Canovas
Astronomical Institute Utrecht, the Netherlands


ExPo is an imaging polarimeter that has been built in Utrecht University. ExPo works in the visible, and it combines the dual-beam technique, together with very short exposure times and a high polarization sensitivity. After four successful campaigns at the William Herschel Telescope, we have obtained polarization images of circumstellar environments around T Tau's and Herbig Ae's stars, evolved (post-AGB) stars and planets like Venus and Saturn. Our results prove the utility of imaging polarimetry to characterize faint structures around very different objects. In this talk I will go through the instrument details, and I will show some of our science results.

Upcoming talks

Featured talks