Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
The robotic 2m Liverpool Telescope, based on La Palma, is owned and
operated by Liverpool John Moores University. It has a diverse
instrument suite and a strong track record in time domain science,
with highlights including early time photometry and spectra of
supernovae, measurements of the polarization of gamma-ray burst
afterglows, and high cadence light curves of transiting extrasolar
planets. In the next decade the time domain will become an
increasingly prominent part of the astronomical agenda with the
arrival of new facilities such as LSST, SKA, CTA, Gaia and the next
generation of exoplanet finders. Additionally, detections of
astrophysical gravitational wave and neutrino sources opening new
windows on the transient universe. To capitalise on this exciting new
era we intend to build Liverpool Telescope 2: a new robotic facility
on La Palma dedicated to time domain science. The next generation of
survey facilities will discover large numbers of variable and
transient objects, but there will be a pressing need for follow-up
observations for scientific exploitation, in particular spectroscopic
follow-up. Liverpool Telescope 2 will have a 4 metre aperture,
enabling optical/infrared spectroscopy of faint objects. Robotic
telescopes are capable of rapid reaction to unpredictable phenomena,
and for fast-fading transients like gamma-ray burst afterglows, this
rapid reaction enables observations which would be impossible on less
agile telescopes of much larger aperture. We intend Liverpool
Telescope 2 to have a world-leading response time, with the aim that
we will be taking data with a few tens of seconds of receipt of a
trigger from a ground- or space-based transient detection facility. In
this talk I will discuss the role for Liverpool Telescope 2 in the
2020+ astronomical landscape, the key science topics we hope to
address, and the results of our preliminary optical design studies.
Abstract
Galaxy clusters are the perfect places to study both the always controversial nature vs nurture problem and the still not well understood evolution that galaxies follow. By studying the properties of the galaxies at different locations of the cluster we can assess the first problem, while studying the same properties over cosmic time, helps constraining the different proposed evolutionary theories. In this work we have focused in an intermediately-redshift rich cluster, RX J0152.7-1357 (z=0.83), by fully characterizing its stellar population properties with new state-of-the-art tools . By this means, we have derived for the first time in such a high-z cluster the ages, metallicities, abundance patterns and Star Formation Histories of the cluster ETGs on an individual galaxy-basis . The relations that these properties follow with galaxy velocity dispersion allow us to discuss a passive evolution scenario with respect to a cluster at z~0. Our results favor a downsizing picture where the relation between the position within the cluster, the velocity dispersion and the type of star formation history of the galaxies allow us to better understand the cluster evolution. We find that the most massive galaxies evolve passively while the lower-mass ones, generally located at the outskirts of the cluster, experience a more extended star formation history related to their later incorporation in the cluster.
Abstract
The structure, kinematics and stellar population of the Galactic bulge is very complex. Only three years ago the bulge was discovered to be X-shaped, a structure believed to originate from the dynamical instabilities of a disk, through the formation and posterior heating of a bar. The study of its kinematics reveals a cylindrical rotation, typical of a bar, suggesting the absence of a spheroidal component. Nevertheless, the bulge stellar population is old, has a radial metallicity gradient, and element ratio indicative of a short formation timescale. All these elements conflict with a simplistic view of the bulge as a heated bar, formed via "secular" evolution of a disk. I will review our knowledge of the bulge properties as traced by the 3D structure, kinematics, and chemical composition of its red clump stars.
Abstract
Two competing effects appear to govern galaxy multiplicity (pairs orgroups) at low masses: while associations of low-mass haloes are naturally expected in a LCDM cosmology, galaxy formation within these haloes is thought to be rendered inefficient due to the action of several ionizing agents. Yet associations of dwarf galaxies are known to exist in the Local Volume, and their frequency appears to be unexpectedly high for LCDM expectations even in our own Local Group. Unfortunately, it is not yet well understood what role do interactions between low-mass galaxies play in determining their star formation histories, structural properties, and neutral gas content. Here I will present an investigation of the impact of dwarf-dwarf galaxy tidal interactions on their morphological and star formation properties. The UGC5205 close pair consists of two low-mass (M* ~ 5E7 Msun), late-type galaxies with a relative projected distance of only 10 kpc, and no nearby massive companions. I will show that these equal-mass interactions can be an important 'pre-processing' mechanism that acts before dwarfs are affected by a more massive central galaxy, profoundly impacting their star formation histories and morphologies.
Abstract
In this talk I will show how we can study cosmolgy in a photometric redshift galaxy survey, by means of the angular clustering of galaxies. Previously to fit your data to a cosmological model, the need for a representative, clean and reliable galaxy catalog imposes many constrains in the selection of your data, from the day the data was taken, up to the final galaxy catalog used in the cosmological Analysis. I will try to introduce those issues that are most important for the analysis of galaxy clustering: data reduction and detection limit, catalog pruning, sample selection, photometric redshifts, star/galaxy separation and the need for a detailed angular and depth mask. Once a neat catalog is build upon the raw data of the survey, the cosmological analysis can start confidently. In this context, I will show as an example, the last cosmological results obtained from the DR8 SDSS-III photometric sample, conveniently corrected from systematic errors.
Abstract
I will present the first Large Millimiter Telescope spectra of 4 nearby galaxies with known high star formation rates. The individual spectra were acquired with the Redshift Search Receiver, a 3 mm spectrograph that covers simultaneously the 3 mm band from 75 to 110 GHz. The spectra show rms temperatures of around 4 mK that allow us to detect not only common molecular species such as CO, HCN, HCO+, HCN, 13CO reported widely in the literature but also other more rare molecular transitions (HC3N, CN, CH3OH, CH3C2H) and even Hydrogen recombination lines (from H39alpha to H42alpha). We are making use of theoretical radiative transfer models to analize these spectra in order to understand the variations of the observed line ratios of different lines in galaxies classified as ultraluminous infrared galaxies where the star formation rate may be as high as 100 solar masses per year. These data will help to understand the physical conditions of the gas in regions that are forming stars very efficiently. The observed line ratios in star forming galaxies are also compared to those galaxies that is known to contain an AGN.
Abstract
Based on the double exponential behaviour of the gas mass profile and on the O/H gradient, Robles-Valdez, Carigi & Peimbert (2013) built a sucessful chemical evolution model for M33. The model predicts that in the inner parts of M33 the star formation history follows an inside-out scenario, like M31 or the MW, but in the outer parts of M33 the star formation history follows an outside-in scenario, as dwarf galaxies of the Local Group.
Abstract
I will discuss a new, open-source astronomical image-fitting program, specialized for galaxies, which is fast, flexible, and highly extensible. A key characteristic is an object-oriented design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with the program include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel errors) or the Cash statistic, which is appropriate for Poisson data in low-count regimes; different minimization algorithms allow trade-offs between speed and decreased sensitivity to local minima in the fit landscape. I will also show that fitting low-S/N galaxy images by minimizing chi^2 can lead to significant biases in fitted parameter values, which are avoided if the Cash statistic is used; this is true even when Gaussian read noise is present.
Abstract
How does the group environment hamper star-formation in star-forming galaxies?
Abstract: We present the first results from the H-alpha Galaxy Groups Imaging Survey (HAGGIS), a narrow-band imaging survey of SDSS groups at z < 0.05 conducted using the Wide Field Imager (WFI) on the ESO/MPG 2.2 meter telescope and the Wide Field Camera (WFC) on the Issac Newton Telescope (INT). In total, we observed 100 galaxy groups with wide range of halo mass 10^12 - 10^14 M_sun in pairs of narrow-band filters selected to get continuum subtracted rest-frame H-alpha images for each galaxy in these groups. The excellent data allows us to detect H-alpha down to the 10^(-18) ergs/s/cm^2/arcsec^2 level. Here, we examine the role played by halo mass and galaxy stellar mass in deciding the overall star formation activity in star forming disks by comparing stacked H-alpha profiles of galaxies in different halo mass and stellar mass bins. With this preliminary study, we have found that the star-formation activity in star-forming galaxies decreases in larger halos compared to the field galaxies. Using median equivalent width profiles, we can infer how environmental processes affect star-forming galaxies differently at different radii.
Abstract
As early as 10 Gyr ago, galaxies with more than 10^11 M* in stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (<0.1%) may have survived untouched till today. Searches for such relic galaxies, useful windows to explore the early Universe, have been inconclusive to date. In this talk, we will present the first case of a nearby galaxy, NGC1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfils many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H]=0.20+-0.04 with a smooth decline towards the outer regions) and alpha enriched ([alpha/Fe]=0.4+-0.1). This suggests a very short formation time scale for the bulk of stars of this galaxy. This object also rotates very fast (V_{rot}~300 km/s) and has a large central velocity dispersion (sigma>300 km/s). NGC1277 allows the explorations in full detail of properties such as the structure, internal dynamics, metallicity and initial mass function at ~10-12 Gyr back in time when the first massive galaxies were built.
Upcoming talks
- Revisiting mass transfer and accretion in symbiotic binaries in the Gaia eraDr. Jaroslav MercThursday November 28, 2024 - 10:30 GMT (Aula)
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)