Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
In collaboration with member states institutes, the use of the synergies with ESO is producing first important results in the R&D for Laser Guide Star adaptive optics, to be used for the large and extremely large telescope projects.
In this talk we will report on the preliminary results of the current campaign on LGS return flux with laser guide stars at Observatorio de el Teide and the foreseen tests of the EELT LGS-AO scheme, to be done at the WHT starting in summer 2016. An outlook will be given on the proposal for further feasibility tests at WHT in 2018-19, to experiment novel LGS-AO schemes using uplink beam correction and pyramid wavefront sensing. The demonstration is for a LGS-AO scheme giving high Strehl on the EELT and adaptive optics in the visible on 8m class telescopes.
Abstract
Understanding the stellar initial mass function (IMF) is a key aspect to obtain a complete picture of galaxy formation and evolution. In the past years, we have carried out a systematic census of the IMF in the unresolved stellar populations of (massive) early-type galaxies (ETGs), using optical and NIR spectroscopy from different surveys (e.g. SDSS, CALIFA) and dedicated observing programmes (OSIRIS@GTC, XSHOOTER@VLT). I will present results on a non-universal IMF in ETGs - pointing to an excess of low-mass stars in high-, relative to low-, mass galaxies - and current constraints on the physical driver behind the IMF variations.
Abstract
The search for detection of gamma-rays in the very-high-energy range (VHE, >100GeV) from distant AGNs by Imaging Atmospheric Cherenkov Telescopes (IACTs) gets very complicated at high redshifts, not only because of the lower flux due to the distance of the source, but also due to the consequent absorption of gamma-rays by the extragalactic background light (EBL), affecting VHE sources at z~0.1 and beyond. The farthest source ever detected in the VHE domain was the blazar PKS1424+240, at redshift z>0.6. In the last months MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and to push the boundaries for VHE detection to redshifts z~1. The two sources detected and analyzed, blazar S30218+35 (Atel discovery #6349) and FSRQ PKS1441+25 (Atel discovery #7416) are located at redshift z=0.944 and z=0.939 respectively. S30218+35 is also the first gravitational lensed blazar ever detected in VHE. The multiwavelength dataset collected allowed us to test for the first time the present generation of EBL models at such distances. I will show results on MAGIC analysis on S30218+35 and PKS1441-25, including spectral energy distributions and EBL absorption studies, in a multi-wavelength context.
Abstract
Shortly after the discovery of the first extra-solar planet, many studies showed that stars hosting giant planets have significant metallicity excess when compared with the stars without known giant planets. Curiously, this strong metallicity-giant planet correlation is not found for the lowest mass planets. On the other hand studies aimed to clarify whether the planet-hosting stars are different from stars without planets in their content of individual elements (other than iron) yielded contradictory results. I will review the most recent results by discussing the importance of individual light and heavy elements for the formation and evolution of planets. I will also present the latest results about the role of metallicity on the architecture of planets.
Abstract
The Observatorio Astrofísico de Javalambre (hereafter OAJ) is a new Spanish astronomical facility devoted to carry out large sky multi-filter surveys with two telescopes of large field-of-view (FoV): the Javalambre Survey Telescope (JST), a 2.5m with 3deg FoV, and the Javalambre Auxiliary Survey Telescope (JAST), an 80cm with 2deg FoV. Both telescopes are equipped with panoramic cameras that amount to 1.3Gpix and are able to host more than 80 different filters simultaneously. During the first years of operation, the OAJ will be mostly devoted to conduct the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) and the Javalambre Photometric Local Universe Survey (J-PLUS). J-PAS will observe 8.500deg2 of the sky visible from Javalambre with a set of 54 narrow-band contiguous optical filters plus 5 broader ones, performing in the end as a low resolution IFU of the Northern hemisphere. It will provide unprecedented spectral energy distributions for every pixel of the sky, and ultimately for more than 200 million galaxies. J-PLUS is now beginning to observe the same sky area of J-PAS with 12 narrow, intermediate and broad-band filters aimed to provide the photometric calibration of J-PAS and unprecedented multicolor data for many fields of the Astrophysics. Both J-PAS and J-PLUS will provide powerful 3D views of the Universe that will be made publicly available to the community as legacy projects. In this talk I will present the OAJ and the J-PAS and J-PLUS projects, describing the survey strategies and their main scientific objectives and capabilities.
Abstract
Lecture 5:
- Data Analysis with the Fermi-LAT
- Maximum Likelihood
- Gamma-ray Catalogs and why we need them
Abstract
Lecture 6: Pulsar timing as a tool for fundamental physics (b)
- Direct detection of gravitational waves
- Constraints on nuclear matter interactions
- Investigations of globular clusters, ism, galactic B-field
Abstract
Lecture 5: Pulsar timing as a tool for fundamental physics (a)
- Constraints to general relativity
- The case of the Double pulsar
- Constraints to general theories of gravity
Abstract
Lecture 6:
- Neutron-star binaries
- Ultra-luminous X0ray sources
- Lags and reverberation mapping
Abstract
Lecture 3: Pulsar timing concepts [isolated pulsars]
- Timing observation procedure
- Barycentering the data at infinite frequency
- Timing model
Upcoming talks
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)