Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
I present a detailed analysis of the scaling relations of ETGs and suggest a way to predict the evolution of the distributions of galaxies in these planes. This new approach is able to account of several features observed in the FP projections and of the tilt of the Fundamental Plane.
Abstract
El próximo proyecto en estudiar es fondo cósmico de microondas (CMB) es LiteBIRD, un satélite de la JAXA que pretende estudiar la polarización de los modos-B. En él se encuentran integrados tres telescopios que recorren un rango frecuencial desde los 34 hasta los 448 GHz, donde se encuentran los Transition-Edge Sensor Detectors (TES), que operan a una temperatura de 100mK y que requieren de una estabilidad térmica estricta. En el Instituto de Astrofísica de Canarias se están estudiando mecanismos de control de la temperatura para convertir los requisitos térmicos en una realidad.
Youtube:
https://youtube.com/live/9Cq9Oy-aicY?feature=share
Abstract
Meeting ID: 817 0462 3667
Passcode: 643393
Abstract
Dwarf galaxies are powerful tools of near-field cosmology and galactic archaeology: their numbers, distribution, and star formation can be linked to both the tenets of LCDM (the missing satellite "problem," their (an)isotropic distribution, their dark matter content) and to the build up of their hosts and their environment (accretion, quenching). The exquisite detail offered by observation of the nearby Milky Way dwarf galaxies has built a picture of what dwarf galaxies are and how they evolved through time. In this talk, I will review the increasingly sharp view we are building of the dwarf-galaxy system of the Milky Way's "sister" galaxy, Andromeda, and emphasize key similarities and differences between these two systems of satellites in the hope to learn what features are common or, on the contrary, driven by the different pasts of the Milky Way and Andromeda.
Meeting ID: 841 1580 773
Passcode: 603521
Abstract
TNO is big non-profit Dutch company with more than 3000 professionals. In this talk an introduction about TNO and its capabilities applied to astronomy will be presented. TNO has done the preliminary design of the Adaptive Secondary Mirror for the European Solar Telescope. TNO also develops other optical devices for ground based and space astronomy and also for optical communications.
Youtube: https://youtube.com/live/_b6Tdzr_Cq0?feature=share
Abstract
Lithium is a key element which plays an important role in astronomy as well as everyday human life. Nevertheless it is probably the only element whose astronomical origin is still a mystery. A fraction of about 30% of what is measured today was made in the first 3 minutes of the Universe and about 10% is made by spallation reactions of cosmic rays with the atoms in the interstellar medium. However, as stars burn Li in their hot interiors and what makes the remaining ~60% is still unknown. The recent detections of 7Li and 7Be in the outburst of classical novae is a landmark in the solution of this long standing mystery. The discovery confirms a theoretical speculation made about 50 years ago but which was never supported by observations. Since then the presence of Be-7 has been confirmed to be ubiquitous in about a dozen classical novae and very recently also in the recurrent nova RS Oph that blew out in August 2021. However, the observed values show tension with theory being one order of magnitude greater than predictions. Detailed Li Galactic chemical evolution models assuming the "observed" yields show that indeed Novae could be the long sought source for the Galactic 7Li.
Abstract
lighter than the canonical axion will be discussed. The implications for dark matter, neutron stars and gravitational waves searches will also be addressed.
Abstract
After three intense and fruitful weeks, the first MIT student camp at the OT is coming to an end. We celebrate the achievements of this successful pilot experience of collaboration between the two institutions with a special event where the students will present their results with the following talks:
- Oris Neto - HD370222 and its spectral melodies (PI: Dr. Sergio Simon-Diaz, IAC)
- Claire McLellan-Cassivi - Determining rotation periods of 3 Koronis family asteroids (PI: Dr. Steven Slivan, MIT)
- Mohan Richter-Addo - Astrometric calibration of the Artemis telescope (PI: Dr. Michael Person, MIT)
- Helena McDonald - Observations of historic IAC dwarf stars in the modern epoch (PIs: Drs. Rafael Rebolo and Roi Alonso, IAC)
- Hillary Andales - Host galaxies properties of mid-infrared tidal disruption event candidates (PI: Megan Masterson, MIT)
- Kylee Carden - Followup observations of TESS objects of interest: Discovering (real) other worlds (PI: Dr. Michael Person, MIT)
Abstract
Within the hierarchical framework for galaxy formation, merging and
tidal interactions are expected to shape large galaxies up to the
present day. While major mergers are quite rare at present, minor
mergers and satellite disruptions - that result in stellar streams -
should be common, and are indeed seen in the stellar halos of the Milky
Way and the Andromeda galaxy. In the last years, the Stellar Stream
Legacy Survey (PI. Martinez-Delgado) has exploited available deep
imaging of some nearby spiral galaxies with the ultimate aim of
estimating the frequency, morphology and stellar luminosity/mass
distribution of these structures in the local Universe. In this talk, I
will present the first results of our systematic survey of stellar
streams together with some recent follow-up observations (e.g. Megara,
Subaru) and N-body modelling of the most striking streams. Finally,
I will discuss what we can learn about galaxy formation from the results
of this survey, including the comparison with the available L-CDM
cosmological simulations, and our plans to extend this stream survey
at lower surface brightness regime with the recently approved ARRAKHIS,
the first ESA fast-mission lead by Spain.
Abstract
Spectroscopic analyses of stellar chemical compositions are model-dependent, and shortcomings in the models often limit the accuracy of the final results. For late-type stars like our Sun, two of the main problems in present-day methods are that they assume the stellar atmosphere is a) one-dimensional (1D) and hydrostatic, and b) satisfies local thermodynamic equilibrium (LTE). We can relax these assumptions simultaneously by performing detailed 3D non-LTE radiative transfer post-processing of 3D radiative-hydrodynamic model stellar atmospheres. I shall give a brief overview of this approach, and illustrate its impact on carbon, oxygen, and iron abundances in late-type stars.
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)