Recent Talks

List of all the talks in the archive, sorted by date.


LH5RlphAKy0-thumbnail
Tuesday March 21, 2023
Dr. Scott Kenyon
CfA / Harvard & Smithsonian

Abstract

 

Many (perhaps most) nearby white dwarfs have strong 
absorption lines from Ca, Si, Mg, Al, and other metals 
on optical and ultraviolet spectra. Abundance analyses 
suggest the ensemble of metals has a composition similar 
to asteroids or the cores of rocky planets. The atmospheric
diffusion times are much smaller than their ages. Thus, the 
metals must be continually replenished.  I will describe 
observations of these systems and outline an evolutionary 
path that allows material from an erstwhile planetary system
to end up on the surface of the white dwarf remnant of an
A-type main sequence star.

InKU1oWsVHc-thumbnail
Tuesday March 21, 2023
Drs. Daniela Korkacova
Charles University (Czcech Rep.)

Abstract

FS CMa stars are a subgroup of the B[e] stars. The forbidden emission lines and infrared excess are present in their spectra. This is a sign of very extended circumstellar region. While the B[e] phenomenon has been explained for other B[e] groups, the nature and evolutionary status of FS CMa stars has not been explained. Recently, we discovered very strong magnetic field in one of FS CMa stars, IRAS 17449+2320. The strength of the magnetic field modulus, about 6.2 kG, is in the order of the strongest Ap stars. The magnetic field together with other properties point to the post-merger origin of IRAS 17449+2320. It is very likely that other post-mergers are hidden among FS CMa stars.

The first results of our new N-body simulations show that more than half of mergers occurs in B-type stars. In other words, we are overlooking the most frequent channel of the mergers. This may have an important consequence for the enrichment of the ISM by heavier elements. Especially important it may be in the early universe.


uA6Jjbmep4w-thumbnail
Tuesday March 21, 2023
Dr. Angel de Vicente Garrido
IAC

Abstract

In a time when we deal with extremely large images (be it from computer
simulations or from extremely powerful telescopes), visualizing them can
become a challenge. If we use a regular monitor, we have two options:

1) fit the image to our monitor resolution, which involves interpolation
and thus losing information and the ability to see small image details.

2) zooming in on small parts of the image to view them at full
resolution, which involves losing context and the global view of the
full image.

To alleviate these problems, display walls of hundreds of Megapixels can
be built, which allow us to visualize in full resolution small details
of the images while retaining in view a larger image context. For
example, one of the world's highest resolution tiled-displays is
Stallion (https://www.tacc.utexas.edu/vislab/stallion, at the TACC in
Texas, USA), with an impressive resolution of 597 Megapixels (an earlier
version of the system can be seen being used at
https://tinyurl.com/mt7atad9).

At the IAC we have built a more modest display wall (133 Megapixels),
which you probably have already seen in action in one of our recent
press releases (https://tinyurl.com/4bwtxvec). In this talk I will
introduce this new visualization facility (which any IAC researcher can
use) and discuss on some design issues, possible current and future
uses, limitations, etc.


br3we052mv4-thumbnail
Friday March 17, 2023
Enol Matilla
IAC

Abstract

Las estrellas en el cielo no están quietas. ¿Cómo podemos fotografiar el espacio sin que salgan movidas? Trípodes, monturas, sistemas de guiado y soluciones para conseguir estrellas como alfileres.


Unirse a la reunión Zoom

https://rediris.zoom.us/j/86168960971
ID de reunión: 861 6896 0971

Youtube

https://youtube.com/live/br3we052mv4?feature=share


Ha3vkBK5X_w-thumbnail
Thursday March 9, 2023
Dr. Robert Szabo
Konkoly Observatory

Abstract

Kepler photometry was so precise that new ways could be developed to harvest the great wealth of quasi-continuous data that has never been accessible from the ground. We initiated a project that we dubbed The Kepler Pixel Project in order to explore approaches and to discover new pulsating stars and other time-variable objects. During the project we examined individual pixels of the original Kepler mission to find interesting objects around the main Kepler targets. Specifically we launched a subproject to find background, faint RR Lyrae stars that are missing from the original Kepler sample. Altogether we found 26 new RR Lyrae stars, increasing the Kepler original RR Lyrae sample by 50%. In this talk I'll present the latest results of this project. In addition to RR Lyrae stars I will also show results on ~1000 new eclipsing binaries found in the framework of the same project.

Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) is one of the most important ground-based astronomy projects of the coming decade. In the second half of this talk I will present my research group's work on classification of variable stars with machine learning methods which is part of the Hungarian in-kind LSST contribution. The novelty of our method is that we use images of light curves, such as a human classifier would do. The method gives surprisingly good results based on the shape of light curves only, but can be further improved if additional astrophysical parameters (distance, amplitude, colors, etc.) are taken into account.


6JhTtNaFJgA-thumbnail
Tuesday March 7, 2023
Dr. Eduardo Balbinot
Kapteyn Institute at the University of Groningen

Abstract

Only recently, thanks to the Gaia, have we been able to directly measure how our own Galaxy was formed since its infancy, by cannibalizing smaller galaxies formed at the core of dark matter subhalos. These accretion events can be seen as kinematic groups and may have brought their own group of globular clusters, some of which are only seen today as their remnant cold stellar streams. Here I will discuss how the main accretion events unveiled by Gaia can be linked to previously known halo substructures, mainly large stellar clouds identified more than a decade ago in large photometric surveys. Additionally I will discuss the Jhelum stellar stream in the light of its interaction with the Sagittarius stream, which can give us insight on the details of this ongoing accretion event. Finally, I will briefly discuss how the new Gaia XP DR3 spectra is aiding in  the identification of metal-poor unmixed halo substructures in the solar neighbourhood, highlighting the case of ED-2, a [Fe/H] = -2.5 cold stellar stream in which the Sun is embedded in. 

Finally, I will briefly discuss how the new Gaia XP DR3 spectra is aiding in  the identification of metal-poor unmixed halo substructures in the solar neighbourhood, highlighting the case of ED-2, a [Fe/H] = -2.5 cold stellar stream  in which the Sun is embedded in.

WxBPiiUkwJ4-thumbnail
Tuesday March 7, 2023
Dr. Antonio Cabrera-Lavers
GRANTECAN S.A.

Abstract

In this talk, I'll describe the full upgrade of OSIRIS at GTC telescope, once installed in the Cassegrain focal station including a new monolithic blue-sensitive detector. Changes in the standard operation of the instrument will be detailed, as well as a brief summary of the short-term instrumentation plan for GTC in 2023.

 

Unirse a la reunión Zoom
https://rediris.zoom.us/j/86985740449
ID de reunión: 869 8574 0449

Enlace de Youtube:

https://youtube.com/live/WxBPiiUkwJ4?feature=share


mbxU7VZzR8k-thumbnail
Friday March 3, 2023
Adrián Calzadilla González
IAC

Abstract

La finalidad del proyecto TTNN es realizar la mejora del sistema de control de los telescopios IAC-80 y Carlos Sánchez con el objetivo que el nuevo entorno de software y hardware que se diseñe sea robusto
versátil, permitan controlar los telescopios de forma remota y facilitar, a posteriori, su operación automática. Para el cumplimiento de estos requerimientos en la parte software se está diseñando e implementando un sistema de control de alto nivel basado en ROS y una aplicación de escritorio escrita en pyQt5.

YouTube

https://www.youtube.com/watch?v=mbxU7VZzR8k&t=4s


qY08kujWVY0-thumbnail
Thursday March 2, 2023
Dr. Carlo Cannarozzo
UNAM

Abstract

 

Early-type galaxies: instructions to build them through mergers
Massive early-type galaxies (ETGs) are "red and dead" systems mainly composed of old and metal-rich stellar populations. In a cosmological context, present-day ETGs are believed to be the remnants of a complex stellar mass assembly history marked by several mergers, which are the consequence of the underlying hierarchical assembly of their host dark matter halos. In this talk, I will deal mainly with the merger-driven evolution of ETGs. Firstly, I will illustrate a comparison between observed ETGs from the MaNGA survey and simulated galaxies from the IllustrisTNG cosmological simulation suite. The aim of this study is to provide an interpretative scenario of the stellar mass assembly history of observed present-day ETGs, comparing the radial distributions of their stellar properties with those of simulated galaxies, in which it is possible to disentangle the contribution of stars formed in situ (i.e. within the main progenitor galaxy) and stars formed ex situ (i.e. in other galaxies) and then accreted through mergers. Then, I will describe how the scaling relation between the stellar mass and stellar velocity dispersion in ETGs evolves across cosmic time. Specifically, by extending the results of Cannnarozzo, Sonnenfeld & Nipoti (2020), I model the aforementioned relation through a Bayesian hierarchical approach, considering ETGs with log(M∗/M⊙) > 9 over the redshift range 0 ≲ z ≲ 4. Together with a new characterisation of the relation, I reconstruct the back-in-time evolutionary pathways of individual ETGs on the stellar mass-velocity dispersion plane to answer the question “how did high-redshift ETGs assemble through cosmic time to reach the functional form of the relation in the present-day Universe?“.
After the main topic, if time permits, I would like to spend a few minutes presenting another extra content (below you can find the title and a brief abstract of this further content). Feel free to include it or not in the announcement mail.
EXTRA - Inferring the Dark Matter halo mass in galaxies from other observables with Machine Learning
In the context of the galaxy-halo connection, it is widely known that the Dark Matter (DM) halos show correlations with some physical properties of the hosted galaxy: the most well-known relation is the so-called Stellar-to-Halo-Mass Relation. However, we know that there are several other empirical relations among galaxy properties, involving, for example, the stellar mass, the gas and stellar metallicities, the black hole mass, etc. Given the complexity of the problem and the high number of galaxy properties that might be related to DM halos, the study of the galaxy-halo connection can be approached by relying on machine learning techniques to shed light on this intricate network of relations. With the aim of inferring the DM halo mass and then finding a unique functional form able to link the halo mass to other observables in real galaxies, I rely on the state-of-the-art Explainable Boosting Machine, a novel implementation of generalised additive models with pairwise interactions, training a model on the IllustrisTNG simulation suite at different redshift.

 

 

 

Youtube933518


fPG_QHfq578-thumbnail
Tuesday February 28, 2023
Dr. David Jones
IAC

Abstract

MAAT is a mirror-slicer integral field unit that will be installed in OSIRIS in 2024, breathing new life into the GTC's work horse instrument. As well as the opportunity to perform spatially-resolved spectroscopy over a field of 10"x7", MAAT will also offer increased signal-to-noise and resolution for point sources with respect to the standard long slit mode.  As part of the preparations for the arrival of MAAT, we have implemented support for the reduction of OSIRIS data into the open-source, python-based spectroscopic reduction package PypeIt. Indeed, with the arrival of the new blue-sensitive CCD, PypeIt is now the only publicly available pipeline that continues to work for OSIRIS. With very little human intervention, PypeIt produces fully calibrated and coadded spectra that are near the Poisson limit for point sources. In this talk, I will present a brief overview of the philosophy behind PypeIt and demonstrate the ease with which OSIRIS data (and soon MAAT data) can be reduced.

 



Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks