# Found 4 talks width keyword *Initial Mass Function*

## Abstract

## Abstract

The stellar initial mass function (IMF) is usually assumed to be a probability density distribution function. Recent data appear to question this interpretation though, and I will discuss alternative applications and results concerning the possibly true nature of the IMF. Empirical evidence has emerged that the IMF becomes top-heavy in intense star bursts and at low metallicity. Related to the IMF are binary star distribution functions, and these evolve through dynamical processes in embedded star clusters. The insights gained from these considerations lead to a mathematically computable method for calculating stellar populations in galaxies, with possibly important implications for the matter cycle in galaxies. It turns out that the galaxy-wide IMF, the IGIMF, becomes increasingly top-heavy with increasing galaxy-wide star formation rate, while at the same time the binary fraction in the galactic field decreases.

## Abstract

The basis of stellar population modeling was established around 40 years ago somehow

optimized to the technical facilities and observational data available at that epoch. Since then,

it has been used extensively in astronomy and there has been great improvements relating

their associated ingredients in concordance with the development of more powerful computational

and observational facilities.

However, there has been no similar improvements in the understanding about what is

actually modeling neither in improve the modeling itself to include the current technical advances

to obtain more accurate result in the physical inferences obtained from them.

In this talk I present some advances in the subject of stellar

population modeling and how to take advantage of current facilities to obtain more robust

and accurate inferences from stellar systems at different scales

covering the continuum between fully resolved populations to fully unresolved ones in a unified framework.

## Abstract

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies.

« Newer Older »

## Upcoming talks

- Adaptive Optics the other way round: pre-correcting the uplinkNoelia Martínez ReyWednesday July 24, 2019 - 15:30 (GTC room)