Found 5 talks width keyword Initial Mass Function

z-6pF8SArPw-thumbnail
Thursday November 23, 2023
Oort Fellow and IAU Gruber Foundation Fellow, Leiden Observatory, Leiden University, The Netherlands

Abstract

From the time the first stars formed to the present-day, metals have witnessed the assembly of structure in the Universe in great detail. Although metals only form in stars and stellar remnants, they are ubiquitously present everywhere. However, we still do not understand how metals are effectively dispersed throughout the Universe, and the various roles they play in shaping galaxies. In this talk, I will present a multi scale approach to study the role of metals in galaxy evolution, from molecular clouds to galactic discs. On smaller scales, I will focus on physical processes that shape up the initial mass function (IMF, with a particular emphasis on metal-free and metal-poor environments) that directly set the integrated yield of metals in the first and early galaxies. I will discuss results from high resolution radiation chemo-magnetohydrodynamic simulations that study the impact of turbulence, radiation feedback and magnetic fields on the primordial IMF, and describe analytical models of dusty molecular clouds that explain the transition in the IMF as the metal abundance grows over cosmic time. On larger scales, the talk will cover the physics of gas-phase metal distribution in galaxies. Using a combination of spatially-resolved gas-phase metallicity measurements and novel semi-analytical models, I will present recent results that advance our understanding of metallicity gradients in (late type) galaxies. In particular, I will show how self-consistently incorporating metal dynamics into galaxy evolution models is key to explaining the observed trends in metallicity gradients with galaxy mass, metallicity, and kinematics. I will end by highlighting how ongoing/upcoming astronomical facilities will transform our understanding of metal evolution in galaxies.


U80KjG0JMHM-thumbnail
Tuesday February 12, 2019
Univ. Autónoma de Chile, Severo Ochoa senior researcher

Abstract

 

In this talk, I will review some highlights of my
studies of star formation in the past 35 years.

I started my PhD thesis on the theory of the stellar IMF
in 1977 at MPE in Garching and completed it in 1981.
I studied two different models: (a) hierarchical
cloud fragmentation (star formation as a random
multiplicative process) and (b) competitive accretion
in a protostellar cluster. The first model predicted a
log-normal stellar mass distribution (down to substellar
masses) while the second model produced a power law
(with a slope x = -1, close to the Salpeter slope). 
I will outline both models and discuss how they stood 
the test of time. 
Later, as a postdoc at ROE in Scotland (1983-87), I became 
an observer (mostly at UKIRT) and turned to near-infrared 
(J,H,K) observations of young embedded star clusters, 
such as the Orion Trapezium Cluster, using infrared arrays. 
We observed near-infrared stellar luminosity functions
and derived the corresponding stellar mass spectrum,
using time-dependent mass-luminosity relations based
on pre-Main Sequence evolutionary tracks (without accretion).
A key cluster we studied (with HST) in the near-IR was 
R136/30Dor in the LMC, and we proved the existence of a 
low-mass pre-Main Sequence population in this starburst cluster.
 
In the 1990s, we carried out the first direct imaging studies
of young low-mass pre-Main Sequence binary stars and also the
multiplicity of massive stars, using 2D speckle interferometry
and adaptive optics observations.
We also discovered the first molecular hydrogen (H2) jets
from deeply embedded low-mass protostars (HH211, HH212).  
 
Finally, time permitting, I will describe how I turned from a
near-infrared stellar astronomer to an interstellar
far-infrared astronomer, working with the B747SP
air-borne Stratospheric Observatory for Infrared
Astronomy (SOFIA) at NASA-Ames for the last 6 years.

ejpPy_z68PY-thumbnail
Thursday June 18, 2015
Univ. of Bonn

Abstract

The stellar initial mass function (IMF) is usually assumed to be a probability density distribution function. Recent data appear to question this interpretation though, and I will discuss alternative applications and results concerning the possibly true nature of the IMF. Empirical evidence has emerged that the IMF becomes top-heavy in intense star bursts and at low metallicity. Related to the IMF are binary star distribution functions, and these evolve through dynamical processes in embedded star clusters. The insights gained from these considerations lead to a mathematically computable method for calculating stellar populations in galaxies, with possibly important implications for the matter cycle in galaxies. It turns out that the galaxy-wide IMF, the IGIMF, becomes increasingly top-heavy with increasing galaxy-wide star formation rate, while at the same time the binary fraction in the galactic field decreases.


LBVQ_DbW2T8-thumbnail
Thursday October 18, 2012
IAA

Abstract

The basis of stellar population modeling was established around 40 years ago somehow
optimized to the technical facilities and observational data available at that epoch. Since then,
it has been used extensively in astronomy and there has been great improvements relating
their associated ingredients in concordance with the development of more powerful computational
and observational facilities.
However, there has been no similar improvements in the understanding about what is
actually modeling neither in improve the modeling itself to include the current technical advances
to obtain more accurate result in the physical inferences obtained from them.
In this talk I present some advances in the subject of stellar
population modeling and how to take advantage of current facilities to obtain more robust
and accurate inferences from stellar systems at different scales
covering the continuum between fully resolved populations to fully unresolved ones in a unified framework.


lXL8NeV70Nw-thumbnail
Tuesday February 14, 2012
Instituto de Astrofísica de Canarias, Spain

Abstract

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies.


« Newer Older »