Found 219 talks archived in Galaxies

hSXo-ijeU-8-thumbnail
Tuesday February 28, 2012
Dr. Almudena Alonso Herrero
Instituto de Astrofísica de Cantabria, Spain

Abstract

Luminous Infrared Galaxies (LIR=10^11-10^12Lsun) have star formation rates in the range of ~20-200Msun/yr. In the local Universe ~50% LIRGs show AGN or AGN/SB composite nuclear activity from optical spectroscopy. We decompose Spitzer/IRS 5-35micron spectra of a complete sample of 50 local (d<75Mpc) LIRGs using SB and AGN clumpy torus model templates. We derive a mid-IR AGN detection rate in our sample of local LIRGs of 50%. We also compare the continuum mid-IR AGN detection with other indicators in the mid-IR, optical and X-rays. We estimate for the first time the AGN bolometric contribution to the IR luminosity of the galaxies in local LIRGs. We find that one-third of local LIRGs have LAGN(bol)/LIR>0.05, with only ~10% having a significant contribution LAGN(bol)/LIR>0.25. This is in line with results of Nardini et al. (2010) that only at LIR>3x10^12Lsun the AGN starts dominating bolometrically the IR luminosity in the majority of the systems.


yXfHRjK75Dk-thumbnail
Friday February 24, 2012
Dr. David Sobral
Leiden University, the Netherlands

Abstract

I will present new deep and wide narrow-band surveys undertaken with UKIRT, Subaru and the VLT; a unique combined effort to select large, robust samples of H-alpha (Ha) emitters at z=0.40, 0.84, 1.47 and 2.23 (corresponding to look-back times of 4.2, 7.0, 9.2 and 10.6 Gyrs) in a uniform manner over ~2 sqdeg in the COSMOS and UDS fields. The deep multi-epoch Ha surveys are sensitive to Milky-Way SFRs out to z=2.2 for the first time, while the wide area and the coverage over two independent fields allows to greatly overcome cosmic variance. A total of over 600 sources per epoch are homogeneously selected. Overall, the evolution seen in Ha is in good agreement with the evolution seen using inhomogeneous compilations of other tracers of star formation, such as FIR and UV, jointly pointing towards the bulk of the evolution in the last 11 Gyrs being driven by a strong luminosity/SFR increase from z~0 to z~2.2. Our uniform analysis allows to derive the Ha star formation history of the Universe, for which a simple time-parametrisation is a good approximation for the last 11Gyrs. Both the shape and normalisation of the Ha star formation history are consistent with the measurements of the stellar mass density growth, confirming that our Ha analysis traces the bulk of the formation of stars in the Universe up to z~2.2. We are also exploring the large, multi-epoch and homogeneously selected samples of Ha emitters to conduct detailed morphology, dust, clustering, environment and mass studies which are providing us with a unique view on the evolution of star-forming galaxies and what has been driving it for the past 11 Gyrs.


lXL8NeV70Nw-thumbnail
Tuesday February 14, 2012
Dr. Carsten Weidner
Instituto de Astrofísica de Canarias, Spain

Abstract

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies.


xUs__4hZgYA-thumbnail
Thursday January 26, 2012
Mr. Thomas de Boer
Kapteyn Astronomical Institute Groningen, The Netherlands

Abstract

We present the detailed Star Formation History of the nearby Sculptor and Fornax dwarf spheroidal galaxies, from wide-field photometry of resolved stars, going down to the oldest Main Sequence Turn-Off. The accurately flux calibrated, wide-field Colour-Magnitude Diagrams are used directly in combination with spectroscopic metallicities of individual RGB stars to constrain the ages of different stellar populations, and derive the Star Formation History with particular accuracy.
The detailed Star Formation History shows the star formation at different ages and metallicities, at different positions in the galaxy, and shows that the known metallicity gradients are well matched to an age gradient. The obtained SFH is used to determine accurate age estimates for individual RGB stars, for which spectroscopic abundances (alpha-elements, r- and s-process elements) are known. In this way, we obtain the accurate age-metallicity relation of each galaxy, as well as the temporal evolution of alpha-element abundances.
This allows us to study, for the first time, the timescale of chemical evolution in these two dwarf galaxies, and determine an accurate age of the "knee" in the alpha-element distribution. Finally, we compare the timescale of chemical evolution in both dwarf galaxies, and determine whether the chemical abundance patterns seen in galaxies with recent episodes of star formation are a direct continuation of those with only old populations.


RkfQlaMqRG8-thumbnail
Thursday January 12, 2012
Dr. Javier Alonso-García
Universidad Pontificia de Chile, Chile

Abstract

A serious limitation in the study of the Galactic inner halo and bulge globular clusters has been the existence of large and differential extinction by foreground dust. We have mapped the differential extinction and removed its effects, using a new dereddening technique, in a sample of 25 clusters in the direction of the inner Galaxy, observed in the optical using the Magellan 6.5m telescope and the Hubble Space Telescope. We have also observed a sample of 33 inner Galactic globular clusters in the framework of the VVV survey that is currently being conducted with the new Vista 4m telescope, in infrared bands where the extinction is highly reduced. Using these observations we have produced high quality color-magnitude diagrams of these poorly studied clusters that allow us to determine these clusters relative ages, distances and chemistry more accurately and to address important questions about the formation and the evolution of the inner Galaxy.


9iyGjgveo8k-thumbnail
Thursday December 15, 2011
Dr. Miguel Ángel Aloy
University of Valencia, Spain

Abstract

Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae (Woosley et al. 2006). They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium (Zhang et al. 2004). Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to 1.6 Gpc by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a helium star-neutron star merger that underwent a common envelope phase expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which gets thermalized by interacting with the dense, previously ejected material and thus creating the observed black-body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy (Campana et al. 2011).


7MNiFvojtfI-thumbnail
Tuesday December 13, 2011
Dr. Dave Wilman
MPE, Germany

Abstract

The origin of galaxy morphology has to be seen in the context of the hierarchical build up of structure and baryons expected in a CDM Universe. Star formation and structural properties of galaxies are well known to relate to their environment and stellar mass. We quantify the relation between galaxy morphology and both stellar and halo mass. In this talk, we present our sample, and the remarkably different morphological trends for the most massive ("central") and other ("satellite") galaxies in groups. We then interpret these trends both empirically and in the context of purpose-built recipes applied to two independent semi-analytic galaxies of galaxy formation, which account for the full merger history of galaxies.


hnj6A7mJpVk-thumbnail
Thursday November 24, 2011
Dr. Maritza A. Lara-Lopez
Australian Astronomical Observatory, Australia

Abstract

To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by Metallicity, Star Formation Rate (SFR), and stellar mass of galaxies. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of these parameters provides important constraints for the galaxy evolution models. We studied the relationships and dependencies between the SFR, stellar mass, and gas metallicity of star forming galaxies from the Sloan Digital Sky Survey-Data Release 7 (SDSS DR7) and Galaxy and Mass Assembly (GAMA) surveys. We have combined both surveys finding evidence of SFR and metallicity evolution for galaxies down to redshift ~0.2. Also, we have proved the existence of a Fundamental Plane in the 3D space formed by the SFR, mass and metallicity for the SDSS and GAMA samples.


eKc-Y0S0IkM-thumbnail
Tuesday October 4, 2011
Dr. Ivan Agudo
Instituto Astrofisica de Andalucia, Spain

Abstract

Relativistic jets in AGN in general, and in blazars in particular, are the most energetic and among the most powerful astrophysical objects known so far. Their relativistic nature provides them the ability to emit profusely in all spectral ranges from radio wavelengths to gamma-rays, as well as abrupt variability in all time scales (from hours to years). Since the birth of gamma-ray astronomy, locating the origin of gamma-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Deep and densely time sampled monitoring programs with the Fermi Gamma-ray Space Telescope and several other facilities at most of the available spectral ranges (including polarization measurements where possible) are starting to shed light for the case of blazars. After a short review of the status of the problem, some of the latest results locating the GeV emission in the jets of some blazars, at >10 parsec from the central AGN engine, will be presented together with their implications about the gamma-ray emission mechanisms involved


WsZ6pYyAx4Y-thumbnail
Tuesday September 27, 2011
Dr. Ignacio Trujillo
Instituto de Astrofísica de Canarias, Spain

Abstract

In the last few years there has been cumulative evidence showing that massive galaxies have dramatically grown in size since z~3. This result has remained very controversial as it seems at odd with our previous knowledge based on the detailed analysis of the stellar populations of nearby massive spheroids which shows that their stars were form very early on and over a short time interval. In addition to this, there is growing observational support for a significant evolution of the morphologies of these galaxies with cosmic time. In this talk, I will summarize what we have learned since the discovery of the strong evolution of the morphological properties of the massive galaxies, the mechanisms proposed to explain their origin and size increase, and the pending questions still to solve.