Latest talks

List of all the talks in the archive, sorted by date.

Thursday April 27, 2017
Dr. Yiping Shu
National Astronomical Observatories, Beijing, China


We present Hubble Space Telescope (HST) F606W-band imaging observations of 21 galaxy-Lyα emitter lens candidates in the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line Lens Survey (BELLS) for GALaxy-Lyα EmitteR sYstems (BELLS GALLERY) survey. 17 systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Lyα emitters (LAEs) at redshifts from 2 to 3. The HST imaging data are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field. The Einstein radii of the BELLS GALLERY lenses are on average 60% larger than those of the BELLS lenses because of the much higher source redshifts which will allow a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼ 13× lensing magnification, the LAEs are resolved to comprise individual star-forming knots of a wide range of properties with characteristic sizes from less than 100 pc to several kpc, rest-frame far UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.

Thursday April 20, 2017
Prof. Ignacio Cirac
Max-Planck-Institut für Quantenoptik


The discovery of Quantum Physics gave rise to one of the most important scientific and technological revolutions experienced by mankind. It triggered, for instance, the discovery of lasers, semiconductors, or nuclear power. In the last few years we are experiencing a second "Quantum Revolution", where the most exotic features of Quantum Physics can not only be confirmed, but also have major technological consequences. In particular, new cryptographic and computational opportunities are emerging, which will be impossible to reach with any other technology. Nowadays, there exists an extensive international effort to build quantum computers, cryptographic systems, as well as other devices. In this talk I will explain the basics of all those devices, their potential applications, as well as the status of that international effort and its prospects of giving rise to powerful technologies.

Tuesday April 11, 2017
Dr. Eric Fossat
Observatoire de la Côte d'Azur


Helioseismology is about 40 years old, still a young science. It has been a tremendous success providing many more results than initially expected, including those coming from Izana of course. Now we really know a lot of the solar internal structure and rotation.

However, one important parameter has still resisted to this investigation, the solar core rotation, which is not accessible to acoustic modes of oscillation, and helioseismlogy successes have all been obtained from acoustic modes. The reason is simple: the second type of seismic oscillations, called g modes (g for gravity, as the waves on the sea) are confined in the deepest layers of the Sun, while the observers are staying outside. These g modes that contain the information on all properties of the solar core have never been convincingly detected despite many efforts and attempts during the last forty years.

We have used a differential parameter of the acoustic modes, carefully selecteded to have a maximum sensitivity to the deepest layers and a minimum sensitivity to the surface layers, to look for its possible modulation produced by periodic motions in the solar core. The frequencies possibly accessible are very low, they correspond to periods between about half a day and two days. The advantage is that in this very low frequency range, if g modes exist, they must follow an asymptotic behaviour that makes possible a collective detection. Using a long data set (16.5 years) from the GOLF instrument onboard  the SOHO space mission, the result is the success of this search, and I will present you these asymptotic parameters, including the measurement of the core rotation within less than 1 percent uncertainty.

Tuesday April 4, 2017
Dr. Ismael Perez Fournon, Dr. Alina Streblyanska


How far can we see galaxies in the distant Universe? When are the first metals and the first dust formed?
We have now the first results on these topics (Laporte et al. 2017, ApJL, 837, 21L) based on the detailed analysis of
a gravitationally lensed Y-band dropout, A2744_YD4, selected from deep Hubble Space Telescope imaging in the Frontier Field
cluster Abell 2744. Band 7 observations with the Atacama Large Millimeter/submillimeter Array (ALMA) indicate the proximate
detection of a significant 1 mm continuum flux suggesting the presence of dust for a star-forming galaxy with a photometric
redshift of z~8. Deep X-SHOOTER spectra confirms the high-redshift identity of A2744_YD4 via the detection of Lyα emission
at a redshift z =8.38.  The association with the ALMA detection is confirmed by the presence of [O III] 88 μm emission at the
same redshift.  Although both emission features are only significant at the 4-sigma level, we argue their joint detection and
the positional coincidence with a high-redshift dropout in the Hubble Space Telescope images confirms the physical association.
Analysis of the available photometric data and the modest gravitational lensing magnification indicates A2744_YD4
has a stellar mass of ∼2 × 10^9 solar mass, a star formation rate of ∼20 solar mass_yr^‑1 and a dust mass of ∼6 × 10^6 solar mass.
We discuss the implications of the formation of such a dust mass only ≃ 200 Myr after the onset of cosmic reionization.

Tuesday March 28, 2017
Prof. Malcolm Fridlund
Leiden Univ., Netherlands; Uppsala Univ., Sweden


While there may be some possibilities of detecting biological signatures (“biomarkers”) outside the Solar System from the ground, most authorities
believe that major installations in space are required to do so.
In this talk we present the background, a brief summary of possible biomarkers, of possible targets and of the ways and means to observe them.

Tuesday March 14, 2017
Dr. Bärbel S. Koribalski
Australia Telescope National Facility, CSIRO, Australia


I will present results from the "Local Volume HI Survey'' (LVHIS), including a multi-wavelength atlas of 82 nearby galaxies. The LVHIS project targets all nearby, gas-rich galaxies with vLG < 550 km/s or D < 10 Mpc that are detected in the "HI Parkes All-Sky Survey" (HIPASS). A declination limit of DEC < -30 degrees was chosen for observations with the Australia Telescope Compact Array (ATCA). The majority of LVHIS galaxies are dwarf galaxies, but we also mapped the disks and outskirts of several very large galaxies (eg M83).
I will also introduce the Australian Square Kilometre Array Pathfinder (ASKAP) which consists of 36 x 12-m dishes, each equipped with Phased-Array Feeds, operating from 0.7 to 1.8 GHz. With a field-of-view of 30 square degr ASKAP is a fast 21-cm survey machine. Early Science with 12 antennas has started and I will present first results on our target field: nearby groups and clusters.

Thursday March 9, 2017
Dr. Enrique Solano


I've heard many times about the Virtual Observatory, but what really is VO? Is it just for IT people?, for data centres?, for astronomers?, for everybody? Who is behind VO? Is the Virtual Observatory sustainable in the medium-term? Was it just a nice idea or is it really having an impact on the way astronomers make science with archive data?
In this talk I'll try to answer all these questions by describing the Spanish Virtual Observatory, an initiative that began in 2004 with the aim of coordinating at national level the VO-related activities in four different fields.
Special focus will be given to usage examples of VO tools for real VO-science projects.

Thursday March 2, 2017
Dr. Daniel Angerhausen
Universität Bern


In my presentation I will give a short introduction to the science of extrasolar planets, in particular the technique of transit, eclipse and phasecurve spectro-photometry.  I will describe my various projects in this emerging field using state of the art spectroscopic and photometric instruments on the largest ground based telescopes, the 'flying telescope' SOFIA (Stratospheric Observatory for Infrared Astronomy) and the Kepler and Hubble space telescopes.

Friday February 24, 2017
Dr. Elena Moretti
Max-Planck-Institut für Physik


Gamma Ray Bursts (GRBs) are among the most energetic transient phenomena frequently followed up by different observatories and yet several fundamental questions are still open. Fermi and MAGIC are continuing their observations of GRBs since several years, giving highest priorities to the most interesting events. This effort led to remarkable discoveries in the High Energy regime, showing potential for even more meaningful achievements in the Very High Energy (VHE) regime. Enhanced follow up strategies of MAGIC and soon to come CTA Large Size Telescopes (LST) observations create unique opportunities for the detection of GRBs at VHE. In this talk I will give an overview of the high energy GRB properties as seen by Fermi and show the potential for the first VHE detection with MAGIC and CTA LSTs.

Tuesday February 21, 2017
Dr. Nikolay Britavskiy


The identification and investigation of red supergiants (RSGs) in the Local Group and beyond are extremely important for understanding massive star evolution and mass-loss.  Star-forming dwarf irregular (dIrr) galaxies serve as ideal laboratories for investigating physics of red supergiants within the context of different metallicities of host galaxies. Also, RSGs may be used as tracers for abundance determinations and star formation history of dIrrs. I will present a systematic survey of RSGs and luminous blue variables (LBVs) in nearby dIrr galaxies with the goal to complete the census of these objects in the Local Group. Using the fact that RSGs and LBVs are bright in mid-infrared colors due to dust, we applied a technique that allows us to select dusty massive stars based on their [3.6] and [4.5] Spitzer photometry. I applied our criteria to 7 dIrr galaxies: Pegasus, Phoenix, Sextans A, Sextans B, WLM, IC 10 and IC 1613 selecting 124 point sources, which we observed with the VLT/FORS2, GTC/OSIRIS and duPont/WFCCD spectrographs. In total, we identified 28 RSGs (21 are new discoveries) and 2 new emission line objects in these galaxies. These new discoveries are statistically significant and this sample increased the number of spectroscopically confirmed RSGs in dIrrs by 50%. Moreover, for the newly identified RSGs we measured the fundamental physical parameters by fitting their observational spectral energy distributions with MARCS stellar atmosphere models. This work serves as a basis for further investigation (also in a framework of my activity in IAC) of the newly discovered dusty massive stars and their host galaxies.