Latest talks

List of all the talks in the archive, sorted by date.

Thursday February 1, 2018
Dr. Savita Mathur


More than 40 years ago, Skumanich (1972) showed how rotation and magnetic activity decreased with the age of a solar-like star. While this result was based on the study of young cluster stars, later observations  of other clusters, still younger than the Sun, agreed with this “gyrochronology” relationship.

With the high-quality photometric data collected by the Kepler mission, we have the opportunity to test and study the evolution of stellar dynamics to older field stars. While for clusters, the determination of stellar ages is eased by the fact that the stars were born from the same molecular cloud, it gets trickier and less precise for field stars. This is where asteroseismology plays an important role by providing more precise ages than any other classical methods.

In this talk I will mostly focus on asteroseismic targets from solar-like stars to red giants where we could measure surface rotation, core rotation, and magnetic activity. I will show how the photometric data of Kepler is providing key information in the understanding of angular momentum transport in stars and of magnetic activity at different evolutionary stages of a star like the Sun.

Tuesday January 23, 2018
Dr. Kris Youakim
Leibniz-Institut für Astrophysik Potsdam (AIP)


The most metal-poor stars in the Galaxy are relics from the first generations of star formation, and their properties can reveal key information about the formation and evolution of the Milky Way. However, only a small number of these extremely rare stars are currently known, due to the difficulty in finding them amongst the overwhelmingly more abundant stars of higher metallicity. In this talk, I will present the Pristine survey, a narrow-band photometric survey in the wavelength region around the Ca H&K absorption lines designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, we have covered ~2,500 square degrees of sky in the Northern hemisphere using the CFHT on Mauna Kea in Hawaii, as well as a sizeable spectroscopic follow-up sample using mostly the INT and WHT in La Palma. With this data, we have demonstrated success rates of 70% for finding stars with [Fe/H] < -2.5, and 22% for stars with [Fe/H] < -3.0. This represents a significant improvement upon previous searches for EMP stars, which have reported success rates of 3-4%. With this efficiency, the Pristine survey is poised to make a significant contribution to constraining the metal-poor tail of the metallicity distribution function, as well as increasing the number of known ultra metal-poor (UMP) stars in the literature. In addition, I will discuss how the Pristine survey is being used to characterise the faint dwarf galaxy population, and analyse substructure in the Galactic Halo.

Tuesday January 16, 2018
Dr. Carlos del Burgo


We employ a Bayesian method to infer stellar parameters from the PARSEC  v1.2S library of stellar evolution models and test the accuracy of these theoretical predictions. Detached eclipsing binaries are ideal for testing. We employ a compilation of 165 detached eclipsing binary systems of our galaxy and the Magellanic clouds with reliable metallicities and measurements for the mass and radius to 2 per cent precision for most of them. We complement the analysis with 107 stars that are closer than 300 pc, for which we adopted solar metallicity. The applied Bayesian analysis relies on a prior for the initial mass function and flat priors for age and metallicity, and it takes on input the effective temperature, radius, and metallicity, and their uncertainties, returning theoretical predictions for other stellar parameters of the binaries. Our research is mainly based on the comparison of dynamical masses with the theoretical predictions for the selected binary systems. We determine the precision of the models. Also, we derive distances for the binaries, which are compared with trigonometric parallaxes whenever possible. We discuss the effects of evolution and the challenges associated with the determination of theoretical stellar ages.

Tuesday December 19, 2017
Dr. Ignacio Martín Navarro
University of California, Santa Cruz


Black holes are a fundamental ingredient in our current understanding of galaxy formation. In the absence of their feedback, state-of-the-art numerical simulations fail to match the observed properties of massive galaxies. Effectively, within a Lambda Cold Dark Matter Universe, black holes reconcile cosmology and galaxy formation theories by regulating baryonic processes. However, despite of this widely-accepted and fundamental role, evidence of black hole regulated star formation remains elusive. I will present our observational efforts to characterize and understand the interplay between black hole activity and star formation, based on detailed stellar populations analyses. Our observations show that black hole and stellar population properties are tightly related, calling for a rich and complex observational framework where star formation, black holes and chemical enrichment evolve coupled in time.

Tuesday December 12, 2017
Dr. Anna Ferré-Mateu
Swinburne University of Technology


Only once in a generation is there the opportunity to reveal the basic properties of a new galaxy type for the first time. With the advent of more sensitive instruments in the current large telescopes, an entirely new universe is being revealed, as it had never been seen before. And it is a challenging one, a low-luminosity universe that is populated by a myriad of new galaxies that are classified into new fancy families: the ultra-compact dwarfs (UCDs), the compact ellipticals (cEs) and the ultra-diffuse galaxies (UDGs). 

Despite some attempts to characterize and understand such galaxies, a recurrent topic prevails: what are they really? Are they intrinsic objects, i.e. were they formed as we see them now?; or were they initially other types of galaxies that have later evolved due to external interactions, which shaped them into what we see now? In the case of cEs, we have been lucky enough to catch some of them 'in the act', being stripped by a larger galaxy. However, at the same time, some of them have been found to be completely isolated and with no signs of interaction. In this talk, I will discuss the different pathways for cE formation and the expectations from their super massive black holes. I will also show how a similarly detailed study for all the faint families together can provide crucial clues for the galaxy evolution paradigm.

Tuesday December 5, 2017
Dr. Juan Calvo Yagüe
Dpto de Matemática Aplicada, Universidad de Granada


The Vlasov-Poisson system is the mean field limit of the classical N-body problem as N goes to infinity. First considered in plasma physics, it has been also used as an approach to describe self-gravitating systems. We will review the basic properties of this model, examine its catalog of stationary solutions and discuss its usefulness to describe galaxies.

Thursday November 30, 2017
Dr. Francesco Sylos-Labini
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome


We describe how a simple class of out of equilibrium, rotating and asymmetrical mass distributions evolve under their self-gravity to produce a quasi-planar spiral structure surrounding a virialized core, qualitatively resembling a spiral galaxy. The spiral structure is transient, but can survive tens of dynamical times, and further reproduces qualitatively noted features of spiral galaxies as the predominance of trailing two-armed spirals and large pitch angles. As our models are highly idealized, a detailed comparison with observations is not appropriate, but generic features of the velocity distributions can be identified to be potential observational signatures of such a mechanism. Indeed, the mechanism leads generically to a characteristic transition from predominantly rotational motion, in a region outside the core, to radial ballistic motion in the outermost parts. Such radial motions are excluded in our Galaxy up to 15 kpc, but could be detected at larger scales in the future by GAIA. We explore the apparent motions seen by external observers of the velocity distributions of our toy galaxies, and find that it is difficult to distinguish them from those of a rotating disc with sub-dominant radial motions at levels typically inferred from observations. These simple models illustrate the possibility that the observed apparent motions of spiral galaxies might be explained by non-trivial non-stationary mass and velocity distributions without invoking a dark matter halo or modification of Newtonian gravity. In this scenario the observed phenomenological relation between the centripetal and gravitational acceleration of the visible baryonic mass could have a simple explanation.

Tuesday November 28, 2017
Dr. Marek Skarka, Dr. Theo Pribulla
Astronomical Institute of the Academy of Sciences of the Czech Republic
Astronomical Institute of the Slovak Academy of Sciences


We will introduce the ERASMUS+ program that offers mobility exchanges between IAC, Czech, and Slovak research institutes and universities. The major part of the talk will be focused on giving information about the involved institutes in CZ and SK (Astronomical Institute of Czech Academy of Sciences, Department of Theoretical physics and astrophysics of Masaryk University, Astronomy department of Comenius University in Bratislava and Astronomical Institute of Slovak Academy of Sciences) and research topics investigated here, that span from hot Be stars, exoplanets, star clusters and relativistic astrophysics to meteoroids and interplanetary matter. All institutions open wide possibilities for collaboration in contemporary astrophysics but also in instrument development.

Thursday November 23, 2017
Prof. Sofia Feltzing
Lund University


Galactic Archeology is today a vibrant field of research. The adoption and launch of the Gaia astrometric satellite by ESA has resulted in many spectroscopic Galactic surveys that aim to complement the Gaia data with information (for the fainter Gaia stars) about stellar elemental abundances, radial velocities, and stellar parameters. This results in multi-dimensional data sets which will allow us to put the Milky Way stellar populations into a much broader galactic context, eg by comparing with models and galaxies at large look-back times. In this talk I will review a selection of recent exciting developments in Galactic Archeaology found via on-going surveys as well as look to the future and see what surveys like 4MOST and WEAVE will bring.  The proposed surveys will be put into a wider context of past, on-going and future spectroscopic surveys and how this can all be combined to understand the Milky Way as a galaxy.

Thursday November 16, 2017
Dr. David Sobral


I will present new results regarding the first ~2 Gyrs of cosmic time using very wide-field Lyman-alpha (Lya) narrow-band surveys, including a large, matched Lya-Halpha survey to investigate how Lya and Lyman-continuum (LyC) photons escape from typical star-forming galaxies at high-redshift. We find that large Lya halos are ubiquitous in star-forming galaxies, and that the typical escape fraction of Lya and LyC photons is typically below a few percent. However, the escape fractions of Lya selected sources are significantly higher. We also find a much higher space density of very luminous Lyman-alpha emitters all the way from z~2 to z~7 than previously assumed, which we confirm spectroscopically with Keck, VLT and WHT. Many of our sources show high-ionisation lines in the rest-frame UV, and some have clear Lya blue wings. Our results also show that the steep drop in the Lya luminosity function into the epoch of re-ionisation happens only for the faint Lya emitters, while the bright ones likely ionise their own local bubbles very early on, and thus are visible at the earliest cosmic times. I will finish with new exciting ALMA detections of individual [CII] clumps at z~7 despite no dust continuum at the epoch of re-ionisation.

Upcoming talks

Featured talks