Found 42 talks width keyword dark matter
Abstract
I will review some theoretical ideas in Cosmology different to the standard "Big Bang": the Quasi-steady State model, Plasma Cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Some open problems of Cosmology within the standard model will also be summarized.
Abstract
Abstract
In the first part of this talk I will present a historical review of the CMB observations, one of the most powerful cosmological probes. Following the first talk of this series, where Jose Alberto described the basic parameters that define the standard cosmological model, I will here summarize the constraints to these parameters that have been derived from these observations. I will also describe the current challenges in this field, in particular the detection of the inflation's B-mode signal through CMB polarization observations, as well as the experiments that have been developed worldwide to this aim, including IAC's QUIJOTE. In the second part, I will focus on the so-called ``missing baryon problem'', i.e. the fact that the half of the expected baryon content of the local universe remains yet undetected. I will describe the theoretical studies that provide hints on where these baryons could be located, and the observational efforts that have been undertaken in this regard.
Abstract
This is the first talk of a series of four aimed to discuss about Cosmology. Here, I will review the basic concepts of the standard cosmological model, which will be further discussed in the following talks, as well as the observational evidence in support of the Lambda-CDM model. As the subject is very broad, I will focus the discussion on topics related with inflation, dark matter and dark energy. Moreover, I will mainly discuss large scale structure probes.
Abstract
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. Galaxy SED-type fractions from z=0.2-1 are estimated from a multi-wavelength sample from the AEGIS collaboration that allows a new determination of the evolving EBL. Then, the transparency of the Universe to very high energy (VHE) gamma-ray photons is derived. We find the maximum transparency of the Universe allowed by the standard framework. This result challenges current VHE observations of high redshift blazars. A solution to this problem is discussed utilizing VHE spectra of the highest redshift blazars assuming the existence of a plausible dark matter candidate known as axion-like particle.
Abstract
Dark Matter in Galaxies is an important subject of current astrophysical research. I will concentrate on spiral galaxies, and first give an overview of the subject from the standpoint of a radioastronomer with a long involvement in the subject. This includes a historical introduction and a review of some of the present-day debates. The currently popular Lambda-CDM model has problems on the scale of galaxies. In a second part I will address more specifically the problem that we still do not know how much dark matter there is in spiral galaxies, and how it is distributed. This is due to the fact that the M/L of the visible matter is poorly constrained and that there is a 'conspiracy' between the dark and the baryonic material. I will present various dynamical methods that have been proposed to constrain the dark matter mass distribution and discuss their advantages and disadvantages.
Abstract
Clusters of galaxies are expected to contain substantial population of cosmic-rays that can yield a significant high energy emission. Moreover, as they are heavily dark matter dominated, they must be considered prime targets for gamma-ray searches for WIMP decay or annihilation. I will present dark matter gamma-ray all-sky simulated Fermi maps of the Local Universe. The dark matter distribution is obtained from a constrained cosmological simulation provided by the CLUES project. I will discuss the possibility for the Fermi-LAT instrument to detect a dark matter gamma-ray signal in extragalactic structures, mainly nearby clusters, in a 5-year all-sky survey and discuss our on work in progress on cosmic-rays. We are also promoting a campaign of observation of the Perseus galaxy cluster with the MAGIC telescopes. Deep observations of nearby clusters with ground-based instruments are crucial to investigate the nature of dark matter as well as the possible gamma-ray emission coming from cosmic-ray acceleration in these environments.Abstract
The distribution of matter in galaxies of different luminosities and Hubble types, as inferred from observations, plays an important role in cosmology, extragalactic astrophysics, astroparticle physics, as well as in a number of issues in high-energy astrophysics, galactic astronomy, star formation and evolution and general relativity. Not withstanding the general successes of the ΛCDM model in explaining the structure and evolution of the universe, there is a growing conviction that the structural properties of the dark and luminous components in galaxies hold important clues about the nature of dark matter and about the processes that are responsible for galaxy formation. This talk is part of an international initiative known as "Dark Matter Awareness Week".The overall purpose of this event is to increase the awareness of the phenomenology of the mass discrepancy phenomenon in galaxies amongst the many scientists currently working with a theoretical, observational, experimental and simulation approach on issues involving dark matter or its alternatives. The content of the talk will be at the level of a journal club talk with an important dose of review.
Abstract
Recent observations of the rotation curve of M31 show a rise of the outer part that cannot be understood in terms of standard dark matter models or perturbations of the galactic disc by M31's satellites. In this talk, we show a possible explanation of this dynamical feature based on the influence of the magnetic field within the thin disc. We have considered standard mass models for the luminous mass distribution, a Navarro-Frenk-White model to describe the dark halo, and we have added up the contribution to the rotation curve of a magnetic field in the disc. We have found a significant improvement of the fit in the outer part when magnetic effects are considered. Our best-fit requires a field strength of ~ 4μG which is compatible with the observations of the magnetic fields in M31.
Abstract
Contrary to popular belief, on very large distance scales visible matter stubbornly refuses to "fall" according to the laws of gravity of both Newton and Einstein. The paradox has led to the introduction of dark matter, purporting to explain the observed surplus of gravitational pull. The logical possibility remains that there is no dark matter, what you see is all there is, and that the paradox simply signals the break down of the Einstein-Newton theory of gravity. I will review alternative theories of gravity that do away with the need for dark matter. Surprisingly Solar system gravitational experiments, such as those associated with the LISA Pathfinder mission, might settle the score between the two approaches.<< First « Newer 1 | 2 | 3 | 4 | 5 Older » Last >>
Upcoming talks
- Weighting the Giants: The Study of Cored Early-Type Galaxies and Their Supermassive Black HolesDr. Bianca NeureiterTuesday December 10, 2024 - 12:30 GMT (Aula)
- Consejo InvestigadoresThursday December 12, 2024 - 10:00 GMT (Aula)