Found 42 talks width keyword dark matter

qzDKxSmNLdE?-thumbnail
Tuesday November 21, 2023
IFIC/CSIC

Abstract

We will review both theoretical and obsevational aspects of gravitational wave backgrounds of cosmological origin. We will present a classifcation of backgrounds and a quantification of our ability to use them as a probe of early Universe phenomena, opening a new observational window to energy scales well above the reach of any terrestrial means. Our discussion will include the latest results from Pulsar Timing Array collaborations (e.g., Nanograv), which have recently anounced the first evidence on the existence of a background of gravitational waves. This talk wll be given in a Colloquium style, making it accessible to a wide audience of physicists. 


4cBJTBClvqc-thumbnail
Thursday March 23, 2023
CEICO, Institute of Physics of the Czech Academy of Sciences

Abstract

I present the recent results obtained using the updated version of MG-MAMPOSSt, a code that constrains modified gravity (MG) models viable at cosmological scales using determination of galaxy cluster mass profiles with kinematics and lensing analyses. I will discuss limitations and future developments of this method in view of upcoming imaging and spectroscopic surveys, as well as the possibilities of including X-ray data to break degeneracy among model parameters. Finally I will show preliminary results about the constraints that can be obtained on the inner slope of dark matter profiles when adding the velocity dispersion of the Brightest Central Galaxy (BCG) in the dataset of MG-MAMPOSSt.


FiYR4orgFyE-thumbnail
Tuesday October 4, 2022
National Centre for Nuclear Research, Warsaw, Poland

Abstract

Vimos Public Extragalactic Redshift Survey (VIPERS) is a spectroscopic survey designed to  investigate the spatial distribution of ~90k galaxies on redshift 0.4<z<1.2. The catalogue of spectroscopic observations, combined with auxiliary photometric data, is perfect for evolutionary studies of different types of galaxies. But also for tracing rare objects. One of them are the so-called “red nuggets”, progenitors of the most massive galaxies in the local Universe.  The discovery of red nuggets - highly massive, passive and extremely compact galaxies  -  at high redshift challenged the leading cosmological models, as they do not fit into the evolutionary paths of passive galaxies. Taking into account  that  the galaxies' mergers are stochastic events, it is possible that some red nuggets  remain relatively unaltered for billions of years. Those survivors constitute a group of unique galaxies in the local Universe,  commonly named “relics”. Despite numerous studies dedicated to red nuggets and relics, the link between the population of compact, massive, passive galaxies in the early Universe and their remnants in the local Universe, is still poorly understood.

In my talk I  will present the first spectroscopically selected catalogue of red nuggets at the intermediate redshift.  It is the most extensive catalogue of this kind of galaxies above redshift z > 0.5.  Selected under the most strict criteria, the group of 77 objects consists of a statistically important sample, which allows for analysis of physical properties of those rare passive giants. I will discuss the influence of compactness criteria on the sample size. Moreover I will present  VIPERS red nuggets number densities and discuss the environmental preferences of those exceptional galaxies.


FRemFV1zZyQ-thumbnail
Tuesday September 13, 2022
IAC

Abstract

Cosmological observations (redshifts, cosmic microwave background radiation, abundance of light elements, formation and evolution of galaxies, large-scale structure) find explanations within the standard Lambda-CDM model, although many times after a number of ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly reverberates in the scientific literature: the higher the precision with which the standard cosmological model tries to fit the data, the greater the number of tensions that arise. Moreover, there are alternative explanations for most of the observations. Therefore, cosmological hypotheses should be very cautiously proposed and even more cautiously received.

There are also sociological and philosophical arguments to support this scepticism. Only the standard model is considered by most professional cosmologists, while the challenges of the most fundamental ideas of modern cosmology are usually neglected. Funding, research positions, prestige, telescope time, publication in top journals, citations, conferences, and other resources are dedicated almost exclusively to standard cosmology. Moreover, religious, philosophical, economic, and political ideologies in a world dominated by anglophone culture also influence the contents of cosmological ideas.


00WAIo1jIcA-thumbnail
Thursday February 10, 2022
DIPC

Abstract

A key problem that we are facing in cosmology nowadays is that we cannot make accurate predictions with our current theoretical models. We have all of the pieces of the standard model but it doesn't have an analytical solution. The only way to have accurate predictions is to run a cosmological simulation. Then, why not use these simulations as the theory model? Well, for one main reason, if we want to explore the full parameter space comprised in the standard model, we need thousands of such simulations, and they are terribly computationally expensive. We wouldn't be able to do it in years! In this talk, I will tell you how in the last few years we have come up with a way to circumvent this problem.


ImZCr3Isick-thumbnail
Thursday November 4, 2021
DIPC

Abstract

 

On the LCDM cosmology, dark matter collapses into virialised objects called haloes. The abundance and distribution of these haloes are a direct consequence of the cosmology of the Universe. By constraining the dark matter halo clustering, we could also constraint the cosmology from our Universe. Since dark matter haloes can not be observed, we need to use galaxies to trace them.

In this talk, I will present a new method that we develop capable of constraining cosmological information from the redshift space galaxy clustering.  We use the scaling of cosmological simulations and the SubHalo Abundance Matching extended (SHAMe) empirical model to produce realistic galaxy clustering measurements over a wide range of cosmologies. We generate more than 500,000 clustering measurements at different cosmological and SHAMe parameters to build an emulator capable of reproducing the projected correlation function, monopole and quadrupole of the galaxies. We run an MCMC using this emulator to constrain the cosmology of the TNG300 hydrodynamic simulation. We correctly predicted the cosmology of the TNG300 simulation constraining sigma8 between [0.75,0.83] and Omega matter h^2 between [0.127,0.162]. The best constraints are obtained when including scales below 2 Mpc/h and when combining all different clustering statistics. We conclude that our approach can be used to constrain cosmological and galaxy formation parameters from the galaxy clustering of galaxy surveys.

gFFJJVLAsoE-thumbnail
Thursday June 3, 2021
Universidad de Zaragoza

Abstract

We introduce the strong CP problem and the existence of the Axion as a possible solution. 

We discuss the possibility that axions are the dark matter of the Universe and the possible ways to

detect it or disprove it using: direct laboratory experiments as well as astrophysical and cosmological

arguments. 

jPcnpAIB2g0-thumbnail
Thursday May 13, 2021
Imperial College

Abstract

Bosonic ultra-light dark matter (ULDM) in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ has been invoked as a motivated candidate with new input for the small-scale `puzzles' of cold dark matter. Numerical simulations show that these models form cored density distributions at the center of galaxies ('solitons'). These works also found an empirical scaling relation between the mass of the large-scale host halo and the mass of the central soliton. We show that this relation predicts that the peak circular velocity of the outskirts of the galaxy should approximately repeat itself in the central region. Contrasting this prediction to the measured rotation curves of well-resolved near-by galaxies, we show that ULDM in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ is in tension with the data.


UyhsRCdQeD8-thumbnail
Tuesday May 11, 2021
Durham University

Abstract

Cosmological and astrophysical experimental data demark a large share of the limits of our knowledge in fundamental physics. I'll review two pieces of evidence of our ignorance: the nature of dark matter and the generation of baryon asymmetry in the universe, together with some of the proposed solutions to each. Finally, a novel connection between the two open problems will be presented.


3-RXY8tY_Bw-thumbnail
Thursday April 29, 2021
COpenhagenUNi / DARK cosmology center

Abstract

The expansion of the Universe is in an accelerated phase. This
acceleration was first estabilished by observations of SuperNovae, and
has since been confirmed through a range of independent observations.

The physical cause of this acceleration is coined Dark Energy, and
most observations indicate that Einsteins cosmological constant
provides a very good fit. In that case, approximately 70% of the
energy of the Universe presently consists of this cosmological
constant.

I will in this talk address the possibility that there may exist other
possible causes of the observed acceleration. In particular will I
discuss a concrete model, inspired by the well-known Lorentz force in
electromagnetism, where Dark Matter causes the acceleration.  With a
fairly simple numerical simulation we find that the model appears
consistent with all observations.

In such a model, where Dark Matter properties causes the acceleration
of the Universe, there is no need for a cosmological constant.


« Newer 1 | 2 | 3 | 4 | 5 Last >>

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks