Found 219 talks archived in Galaxies
Abstract
The vision for the use of the WHT in the coming decade is taking shape. A key element is the construction and deployment of WEAVE, a wide-field massive-multiplex spectrograph. With 1000 fibres and spectral resolutions of 5000 and 20000, the opportunities for discovery are tremendous. Three key fields will be: Milky-Way and Local Group archaeology linked to the Gaia mission; cosmology redshift surveys; and galaxy evolution studies linked to photometric surveys such as VISTA, UKIDSS, LOFAR, EUCLID, and others. IAC has the opportunity to get involved in this important instrument for ORM from the beginning.
Abstract
With the discovery of several massive, young clusters in the last five years, the area around the base of the Scutum-Crux arm (around l=28) has become one of the more intense stellar formation areas in the whole Galaxy. This is not totally unexpected, as it is just there where it was predicted that the long bar of the Milky Way would come into contact with the disk, triggering stellar formation. With this talk we review all these evidences and we bring others into light, as we try to obtain a clearer picture of what is happening in these areas and what does it tell us about the inner structure of the Galaxy, particularly of the bulge+bar complex.
Abstract
In recent years it has become clear that stars can migrate across large regions of the disk without increasing substantially the velocity
dispersion. I review the theory and consequences of migration and discuss
some of the evidence supporting the occurrence of stellar migration, including in the Milky Way's thick disk.
Abstract
It has been thirty years since the seminal work of Alan Dressler on the density-morphology relation, which established environment as a driving mechanism for galaxy formation and evolution. In the following three decades, we have learned that both the intrinsic processes (nature) and environment (nurture) contribute towards shaping the galaxy populations, and the connection between these two still remains an open question. I will summarize recent results on the interplay between environment and galaxy evolution, obtained from the SDSS DR4 galaxy groups catalogue (Yang et al. 2007) by comparing the properties of central and satellite galaxies as a function of their stellar mass and the dark matter mass of their
host halos.
Abstract
The massive black holes found at the centers of most nearby galaxies including our own, are believed to be the ashes of the fuel that powered quasars early in the history of the universe. I will briefly review the astronomical evidence for these objects and then describe some of the exotic dynamical phenomena that originate in their vicinity, including hypervelocity stars, resonant relaxation, and warped and lopsided stellar disks.
Abstract
We present the K band FP of the ETGs members of the clusters observed by the WINGS survey. The data confirm a different tilt of the FP with respect to the V solution and the presence of a substantial tilt in the K band. This led us to further investigate the hypothesis that ETG non-homology greatly contribute to the tilt of the FP.
The WINGS data show that there are now several evidence of both structural and dynamical non-homology for the class of ETGs. Among these we will discuss in detail the tight relation between the mass of the ETGs, their stellar mass-to-light ratio M/L, and the Sersic index n describing the shape of their light profiles. We guess through a series of mock simulations that this relation acts as a fine-tuning that keeps small the scatter around the FP. We therefore conclude that ETG non-homology is closely connected either with the problem of the tilt and with the small scatter around the FP.
Abstract
With imaging at 3.6 and 4.5 microns where the light in nearby galaxies is dominated by old stars, the Spitzer Survey of Nearby Galaxies (S4G) stands poised for an optimal view of stellar mass and structure in the local Universe. I will describe an effort to construct accurate 2D stellar mass maps from S4G images, starting with a correction for non-stellar (e.g. PAH and hot dust) contaminant emission using only the two S4G images as inputs; contaminant emission is isolated from the old stellar light using an Independent Component Analysis (ICA) technique designed to separate statistically independent source distributions. An inventory of recovered contaminants is established via comparison to the non-stellar emission in archival 8 micron images. Once these contaminants are removed, maps of the underlying distribution of old stars are revealed that retain a high degree of structural information and exhibit [3.6]-[4.5] colors consistent with those of K and M giants. Contaminant-free S4G maps constructed with this approach should be ideally suited for tracing the stellar mass in galaxies spanning a range of morphological properties, dust contents and star formation histories.
Abstract
We find a distinct stellar population in the counterrotating and kinematically decoupled core of the isolated massive elliptical galaxy NGC 1700. Coinciding with the edge of this core, we find a significant change in the slope of the gradient of various representative absorption line indices. Our age estimate for this core is markedly younger than the main body of the galaxy. We find lower values for the age, metallicity, and Mg/Fe abundance ratio in the center of this galaxy when we compare them with other isolated elliptical galaxies with similar velocity dispersion. We discuss the different possible scenarios that might have lead to the formation of this younger kinematically decoupled structure and conclude that, in light of our findings, the ingestion of a small stellar companion on a retrograde orbit is the most favored.
Abstract
We compare the Hubble type and the spectroscopic class of the galaxies with spectra in SDSS/DR7. As it is long known, elliptical galaxies tend to be red whereas spiral galaxies tend to be blue, however, this relationship presents a large scatter, which we measure and quantify in detail. We compare the Automatic Spectroscopic K-means based classification (ASK) with most of the commonly used morphological classifications. All of them provide consistent results. Given a spectral class, the morphological type wavers with a standard deviation between 2 and 3 T types, and the same large dispersion characterizes the variability of spectral classes fixed the morphological type. The distributions of Hubble types given an ASK class are very skewed -- they present long tails that go to the late morphological types for the red galaxies, and to the early morphological types for the blue spectroscopic classes. The scatter is not produced by problems in the classification, and it remains when particular subsets are considered. A considerable fraction of the red galaxies are spirals (40--60 %), but they never present very late Hubble types (Sd or later). Even though red spectra are not associated with ellipticals, most ellipticals do have red spectra: 97 % of the ellipticals in the morphological catalog by Nair & Abraham, used here for reference, belong to ASK 0, 2 or 3. It contains only a 3 % of blue ellipticals. The galaxies in the green valley class (ASK~5) are mostly spirals, and the AGN class (ASK 6) presents a large scatter of Hubble types from E to Sd. We investigate variations with redshift using a volume limited subsample. From redshift 0.25 to now the galaxies redden from ASK 2 to ASK 0, as expected from the passive evolution of their stellar populations. Two of the ASK classes (1 and 4) gather edge-on spirals, and they may be useful in studies requiring knowing the intrinsic shape of a galaxy (e.g., weak lensing calibration).
Abstract
Milky Way and most spiral galaxies present some features in the outer part of its disk such as S-warping or U-warping, flaring, lopsidedness, truncation/non-truncation and others, both for the stellar and the gas component. In the present talk, I will review some of the galactic dynamics hypotheses which try to explain these features: either in terms of gravitational interaction, magnetic fields, accretion of intergalactic matter or others. The gravitational interaction may be among the different components of the galaxy or between the spiral galaxy and another companion galaxy. The accretion of intergalactic matter may be either into the halo, with a later gravitational interaction between the misaligned halo and the disc, or directly onto the disc. The phenomena of the outer disc in spiral galaxies might be produced by more than a mechanism. Nonetheless, the hypothesis of accretion of intergalactic matter onto the disc presents several advantages over its competitors, since it explains most of the relevant observed features, whereas other hypotheses only explain them partially.
Upcoming talks
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)