Found 132 talks archived in Stars
Abstract
The current databases of empirical star spectra for modelling single-aged stellar populations (SSPs) generally do not chemically characterize their stars completely. Spectral properties of stars and their populations may change considerably if the elemental abundance ratios E/Fe differ from the solar-scaled values. We intend to build up robust integrated spectral energy distribution of SSPs older than 1 Gyr by adopting the MILES database (Medium-resolution Isaac Newton Telescope Library of Empirical Spectra) and taking into account the Mg/Fe ratio of its stars. Magnesium is a proxy of the alpha-capture elements and the alpha/Fe ratio has been widely used as an indicator of the star formation time scale. In this talk, I present how accurate and extensive our compilation and determination of [Mg/Fe] were obtained around MILES to compute state-of-the-art SSP models. Published high resolution measurements were adopted to define a uniform scale of [Mg/Fe] and calibrate our results at medium resolution that were based on the spectral synthesis of two strong Mg features.Abstract
Up to now more than 400 extrasolar planets have been discovered, about 60 of them are transiting. Transiting extra-solar planets are particularly interesting, because their masses, diameters, densities and orientations of their orbits can be determined. Observations with the CoRoT Satellite have now turned up 10 transiting extrasolar planets. Although most of them are gas giants, it turns out that each of them is very special, and many of them have surprising properties. An unexpected discovery was for example the detection of emission lines from CoRoT 1b. Other interesting discoveries are CoRoT 2b, a planet orbiting a young star, and CoRoT 3b the first transiting brown dwarf orbiting a main sequence star. While the detection of transiting gas giants is interesting, the ultimate goal of CoRoT clearly was the detection of rocky planets. CoRoT has detected a solar-like star which shows transits that are only 0.03% deep. In this talk it it is demonstrated that this planet is in fact the first planet found outside our solar system from which we can firmly say that it is a rocky planet. New observations of this interesting object even constrain the properties of its exosphere.
Abstract
In this Breaking News seminar, I will describe our project dedicated to the search for ultracool low-metallicity dwarfs (or subdwarfs) in the large-scale databases. The highlight of the seminar is the discovery of a mid-L subdwarf, the fifth known to date, and the first one identified in the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic nature of this subdwarf was confirmed with data obtained with GTC/OSIRIS in April 2009.Abstract
The formation of massive stars is not fully understood. The high luminosity and temperature of massive protostars complicate the accretion mechanism at work in intermediate and low mass young stellar objects. Nonetheless, several scenarios exist to explain the formation of massive stars. In this talk, we will focus on the process of triggered star formation on the borders of H II regions. Due to the feedback effects of OB stars, a layer of molecular material is collected during the expansion of the H II region. Instabilities develop in this layer and give birth to new stars. We will present a detailed study of three Galactic H II regions (RCW79, RCW82 and RCW120). Near-infrared integral field observations have been carried out with SINFONI on the VLT. We will see how they reveal the nature of both the ionizing stars and of the YSOs in the collected layer and how they support the scenario of 'triggered star formation'.
Abstract
The surface abundance of lithium on the Sun is 140 times less than protosolar, yet the temperature at the base of the surface convective zone is not hot enough to burn Li. A large range of Li abundances in solar type stars of the same age, mass and metallicity is observed, but theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets. Here we report Li abundances for an unbiased sample of solar-analogue stars with and without detected planets. We find that the planet-bearing stars have less than 1 per cent of the primordial Li abundance, while about 50 per cent of the solar analogues without detected planets have on average 10 times more Li. The presence of planets may increase the amount of mixing and deepen the convective zone to such an extent that the Li can be burned. We also present Be abundances for a sample of stars with and without known planets and discuss the possible relation of these light element with the presence of planetary systems.Abstract
I present some recent results from our Optical and NIR studies of five short period low-mass X-ray binaries (LMXB's; X1822-371, X1957+115, UW CrB, X1916-05 and X0614+091). Optical photometry and spectroscopy reveal some surprising results on the geometry and evolution of accretions discs in LMXB's. Based on our data, it is increasingly clear that accretion discs in these systems are far from being stable and must undergo substantial precession and/or warping behaviour on timescales less than a day in case of the shortest period systems.
Abstract
Spectroscopic observations of novae date back a century, and the fundamental nature of the outburst has been understood for 50 years. Yet, recent observations suggest possible major modifications to the standard nova paradigm. A high-resolution spectroscopic survey of novae has revealed short-lived heavy element absorption systems near maximum light consisting of Fe-peak and s-process elements. The absorbing gas is circumbinary and it must pre-exist the outburst. Its origin appears to be mass ejection from the secondary star, implying large episodic mass transfer events from the secondary that initiate the nova outburst. The spectroscopic evolution of novae is interpreted in terms of two distinct interacting gas systems in which the bright continuum is produced by the outburst ejecta but absorption and emission lines originate in gas ejected by the secondary star in a way that may explain dust formation and X-ray emission from novae.Abstract
Asymptotic Giant Branch (AGB) stars are a principal source of gas and dust input into the interstellar medium, being an important driver of chemical evolution in galaxies. Rubidium is a key element to distinguish between high mass (~4-8 M⊙) AGB stars and low mass (~1-4 M⊙) AGBs - high mass AGBs are predicted to produce a lot of rubidium as a consequence of the genuine nucleosynthetic processes (the s-process) that characterise these stars. The Magellanic Clouds (MCs) offer a unique opportunity to study the stellar evolution and nucleosynthesis of AGB stars in low metallicity environments where distances (and so the star's luminosity) are known. We present the discovery of extragalactic rubidium-rich AGB stars in the MCs confirming that the more massive AGB stars are generally brighter than the standard adopted luminosity limit (Mbol~-7.1) for AGB's. In addition, massive MC-AGBs are more enriched in Rb than their galactic counterparts, as it is qualitatively predicted by the present theoretical models; the Rb over-abundance increase with increasing stellar mass and with decreasing metallicity. However, present theoretical models are far from matching the extremely high Rb overabundances observed.Abstract
Ultra Compact Binaries are predicted to be the strongest known sources of gravitational waves in the LISA pass-band. Since they are at the short period end of the orbital period distribution (<70 mins), their number is a sensitive test of binary evolutionary models. The best method to detect these short period systems, whose optical light is dominated by an accretion disk and show optical intensity variations on timescales close to their orbital period, is through deep, wide-field, fast-cadence photometric surveys. The RaTS (Rapid Temporal Survey) project is unique in that it is sensitive to variability on timescales as short as 2 mins and systems with V~22. Our strategy and initial results will be presented.Abstract
Long suspected on theoretical grounds and supported by tantalising observational evidence, the connection between supernovae and gamma-ray bursts was definitely established in 2003. Since then, a number of events have forced us to revise what we thought we knew about SNe and GRBs. This SN/GRB connection went from tentative to definitive, to maybe not, to maybe in most cases. I will briefly review the major milestones along this road and describe the situation as it is today.Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)