Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
The cutting off of gas supply in galaxies, whether it is exhausted internally or removed forcibly, can have dramatic consequences and are thought to build up clusters dominated by an early-type galaxy population, as observed in the local Universe. In recent years it has become more and more obvious that this transformation starts in moderate overdensities and filaments surrounding and feeding galaxy clusters. Keeping in mind that the environment of a galaxy cluster is the result of continuous hierarchical assembly boasting a wide range of substructures of locally dense environments, we therefore need to ask: Are the observed galaxy (scaling-) relations due to the timing and physics of cosmological structure formation or due to baryonic physics?
To answer this question we need to look beyond the cluster core.
We therefore investigated members (down to 10^8.5 M_sol) of a massive galaxy cluster at z=0.44 out to 3 virial radii. Our observations probe the nearby infall region, central to the topical question of “pre-processing”. The smoking gun of this “pre-processing” are transitional objects, like passive disk galaxies, whose stellar populations and morphologies indicate a recent change in star formation and/or dynamical history. We find a large number of this virialized population at distinct locations. In our exploration of the galaxy stellar mass-size relation (Kuchner+17), we were able to show that the manifestation of the size distribution of the cluster galaxies is due to an outer disk-fading and possible bulge growth that accompanies the varying fraction of star-forming and quiescent galaxies.
Continuing this quest, the Wiliam Herschel Telescope’s new multi-object survey spectrograph WEAVE will run a dedicated survey that focuses on this question of “pre-processing”. WEAVE will map 16 nearby galaxy clusters and their filamentary structure of infalling galaxies out to 5 viral radii. This will allow us to characterize the onset and continuation of galaxy transformation during their infall process toward the cluster center.
IAC
Abstract
The precipitable water vapour (PWV) is the main absorber in the Earth's atmosphere at infrared (IR) and microwave wavelengths. In the last years, the IAC Sky team has been providing real-time PWV data from a monitor based on the GNSS (GPS) technique (GNSS PWV Monitors; GPM). Among other things, the PWV values help in the scheduling of the telescopes with IR instrumentation. The GPM have undergone a continuous process of upgrading. More recently, we have undertaken the PWV forecasting. We will present in the talk a brief summary of the monitors and details of ForO ("Forecasting the Observatories"), the forecasting system for PWV at the Observatories. ForO is based on a mesoscale Numerical Weather Prediction (NWP) model. The ForO system has been validated and calibrated with PWV data from the GPM and will deliver accurate PWV daily predictions for ORM and OT on a 24, 48 and 72 hours windows. This is a definitive improvement to optimize the flexible scheduling for IR observations, in particular for CanaryCAM and EMIR at the GTC.
Abstract
Abstract: A small group of giants on RGB show anomalously large amounts of Li in their
photospheres. In some cases, Li abundance exceeds stars' natal clouds (A(Li) = 3.2~dex)
suggesting addition of fresh Li during stars' evolution on RGB. However, the mechanism
that is responsible for such large enhancement is not understood. In this talk, I will describe
observational results till date, possible scenarios for its origin and implications to Galactic Li
enrichment.
Abstract
La diversidad se ha convertido en una virtud indiscutible, contraria al ideal de la perfección uniforme. Partiendo del origen y la naturaleza de la diversidad biológica, se propone discutir ventajas y costes y señalar medios para inducirla o modificarla.
Abstract
In the last decade we have explored the cosmic depths and found a statistically significant number of galaxies well into the Epoch of Reionization. However, our physical knowledge of these pristine objects remains very scant. Investigating the internal structure, interstellar medium and evolution of early galaxies is the next challenge to understand key processes as the cosmic history of baryons, feedback, reionization and metal enrichment of the intergalactic medium, This ambitious plan can be tackled by combining a new generation of physically-rich, high resolution, zoom simulations with data in the sub-mm bands provided by ALMA. This approach will be soon strengthened by the forthcoming JWST power. I will review the present status and the open questions in the field.
Abstract
CASE (Calar Alto Spectroscopic Explorer) is a new set of instruments for the Calar Alto observatory to unravelling the fine structure of galaxies in the local volume from 3D spectroscopy. CASE represents a new generation of IFS for CAHA that will be explorer in the next six months during the viability study recently approved for the observatory that it is funding by Junta de Andalucía.
The main instrument is planning for the 3.5m telescope and it will be a large field of view integral field optical spectroscopy unit with an intermediate spectral resolution. Other L-IFU will be also studied for the Schmidt telescope. The FoV (3x3 arcmin) and the thousand of optical fibers of CASE will allow us to cover totally most of the galaxies of the Local Universe (distance < 15 Mpc) to map the kinematics, physical and chemical properties of the stellar populations, interstellar medium, and dark matter of galaxies with unprecedented physical spatial scales that range from a few pc in M33 and M31, to less than 100 pc in galaxies of the Virgo cluster.
The intent of this talk is to call the attention of the IAC colleagues to participate in this project.
Abstract
Following the current debate on the fate of SN-condensed dust grains, I will present a set of three-dimensional hydrodynamical simulations of the interaction of dusty supernova remnants (SNRs) with the shocked winds of neighboring massive stars within young massive stellar clusters (SSCs). As a comparison, I will discuss the evolution of supernova remnants in the diffuse ISM with constant density. Since the hydrodynamics of SNRs is intimately related to the properties of their immediate environment, the lifecycle of dust grains in SNRs within SSCs is radically different from that in the diffuse ISM. Moreover, off-centered SNRs evolving in the steep density gradient established due to a star cluster wind experience a blowout phase: shell fragmentation due to protruding Rayleigh-Taylor instabilities and the venting of SN ejecta. The main finding is that clustered SN explosions will cause a net increase in the amount of dust in the surroundings of young massive stellar clusters.
Abstract
Gravitational waves (GWs) emitted by binary black hole coalescences provide an excellent opportunity to study General Relativity (GR) in its strong field regime. This GW emission consists on a superposition of different GW harmonics. When the black holes are far apart, the so called quadrupolar harmonic dominates the rest, known as higher harmonics (HMs),which only get triggered during the final merger and ringdown stages of the binary. In this talk, I will show how higher harmonics can be exploited to decode the properties of the binary and the final merged black hole: from its parameters to the properties of its event horizon.
Abstract
A fully consistent picture of the SNe progenitor evolution can't be found yet. Such scenario increases in complexity as deep and wide surveys, using latest generation instruments, discover new types of transients with unprecedented observational characteristics. For example, the wide heterogeneity observed in interacting transients in the recent years. Still, the nature of these transients is largerly debated: Some are without doubt genuine core-collapse SNe, while others may be giant non-terminal outburst from luminous blue variables. The talk includes my contribution to this topic with data of the recent objects of study and the conclusions extracted from their analysis.
Abstract
The Milky Way (MW) galaxy is not much different from its faraway cousins. However, our position within the MW allows us to study the properties of its stellar populations with exquisite detail in comparison to extragalactic sources. The bulge of the MW (i.e. the stellar population within ~3 kpc from the Galactic center) is the most massive stellar component of the MW hosting very old stars (>10 Gyr), therefore the study of its stellar population properties can shed light on the formation and evolution of the MW as a whole, and of other spiral galaxies at large.
So far, there is a general consensus on the global kinematic, chemical and structural properties of the bulge populations, however the age, or rather, the distribution of the ages of the stars in the bulge is yet to be completely understood.
We aimed at addressing the questions 'How old is the bulge?' and 'Is there a spatial age gradient in the bulge?' through the determination of the stellar ages in the different fields sparsely distributed within a region of 300 deg² centered on the bulge.
We use images from the VISTA Variables in the Vía Láctea (VVV) survey, based in near infrared passbands, to extract accurate magnitude and color of half a billion stars in the bulge area using point spread function fitting.
The newly derived photometric catalogs, used in addition to probe the extinction towards the bulge, will be made publicly available to the entire community.
The contribution of the intervening disk population along the bulge lines of sight has been detected and removed by using a statistical approach in order to obtain a final stars sample that is representative of the bulge population only.
The determination of the stellar ages in different fields is provided through the comparison between the observations and synthetic stellar population models, which have been carefully tailored to account for the observational effects (i.e. distance dispersion, differential reddening, photometric completeness, photometric and systematic uncertainties).
The simulations leading to the construction of synthetic populations have been carried out by using two different methods: i) a model that uses a spectroscopically derived metallicity distribution functions as prior, leaving the age as the only free parameter; ii) a genetic algorithm that finds the best solution within all possible combinations of age and metallicity (i.e. uniform prior in age and metallicity using IAC-POP/Minniac suite).
We ultimately find that the bulge itself appears to be on average old (>9.5 Gyr) throughout its extension (|l| < 10° and -10° < b < +5°), with a mild gradient of about 0.16 Gyr/deg towards the Galactic center.
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)