Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
The role of asteroids and comet impacts on the origin of Earth’s water and organic molecules is reviewed. Earth is believed to have formed dry, and magma oceans probably destroyed any primordial organics on Earth. The oldest clear evidence for water on Earth is about 3.85 Ga, right after the “Late Heavy Bombardment” (LHB). Asteroid and comet impacts during the LHB probably contributed significantly to Earth’s water and organic inventory. Evidence for this contribution is found in the D/H isotopic ratios of meteorites and comets. The abundance and variety of organic solids in asteroids and comets also point at a significant contribution to the organic inventory of the early Earth. However, the pieces of this puzzle do not all fit into a neat picture and several questions remain unanswered.
Abstract
Since its discovery in 1964, the cosmic microwave background (CMB) has been one of the basic pillars of the cosmological model. However, it is only very recently that CMB observations have become one of the most powerful tools in modern cosmology, due to the increasing accuracy of the experiments measuring the CMB anisotropies. In this talk, I will present a brief historical perspective of the history of the CMB observations, since the discovery until nowadays, with special emphasis on the implications and the impact of those observations in cosmology. Experiments like COBE, Tenerife, WMAP or PLANCK will be described. The last part of my talk will be devoted to describe the future of this field, and in particular, will be focused on the possibility of the detection of primordial gravitational-waves.Abstract
The Infrared Spectrograph (IRS) on Spitzer has observed more than 120 asteroids, several Centaurs and Kuiper Belt objects (KBOs), and satellites of the giant planets. The asteroid sample includes objects from near-Earth space, through the Main Belt, and into the Jupiter Trojan swarms. Asteroids from all taxonomic classes have been observed, as have several binary and multiple component systems. The diameters of these targets range from a few hundred meters to a few hundred kilometers. On the whole, IRS has provided a broad sample of emissivity spectra of small Solar System bodies. The largest emissivity features detected are at the 10% level and are confined to the more primitive asteroid classes. Significant spectral variation is apparent among the IRS asteroid sample. Some of the dust observed in the close environment of other stars likely comes from asteroid collisions, so asteroids in the Solar System are proper mineralogical analogs. As capabilities continue to improve, direct observations of small body populations in other systems and inter-comparisons between systems will foster significant insights into the formation and evolution of planetary systems. The Solar System occupies a unique role by its accessibility and the detail to which it can be studied. While the IRS data are a good start, there is much to be learned from a larger set of mid-infrared spectra (e.g., from JWST and SOFIA). In this talk, I will present an overview of the IRS observations of small Solar System bodies, with a few representative objects highlighted for detailed discussion.Abstract
This talk presents the current status of the commissioning of the GTC. It covers the progress made since first light, the current performance and then looks ahead to what is expected between now and the start of science operations in March.
Abstract
Radar observation of near-Earth asteroids (NEAs) reveal the size, shape, spin characteristics of the population of small bodies near the Earth. Although spacecraft missions may give higher resolution images, they are infrequent and expensive. Only through ground based observations can we hope to understand the diverse population of NEAs. Radar imaging reveals surface features and shape at up to 7.5-m resolution. We see a surprising variety of object shapes, which tells us about their formation and evolution. Binary NEAs are easily detected using radar regardless of viewing geometry, the characteristics of which have led to new ideas about NEA evolution and internal structure. Craters and other surface concavities are often visible in radar images, unlike lightcurve-based shape models. Although opportunities to observe comets with radar are rare, more than ten comet nuclei have been detected to date, three with high resolution imaging. Radar observations have played an important role in a number of key areas in small body science, some of which will be discussed in this talk.
Abstract
We examine the latest results concerning the evolution in the structures of galaxies from the local universe up to z ~ 6. We present results from the COSMOS, EGS and UDF surveys and characterise the structure of galaxies in terms of stellar masses. We find in general that galaxy structure becomes more asymmetric with time, and we use this information to determine the merger history of galaxies and the role of mergers in galaxy formation, placing the first firm constraints on the importance of this formation mode.Abstract
SIDE (Super Ifu Deployable Experiment) is being proposed as a new instrument for the GTC 10.4m telescope on La Palma. It will be a wide-field fiber-fed spectrograph of intermediate resolution, highly efficient in multi-object and 3D spectroscopy. SIDE will feature the unique possibility of performing simultaneous visible and NIR observations for selected spectral ranges. SIDE will produce unique data sets and open new opportunities to understand our view on galaxy formation and evolution and it will provide new insights on the physics of the dark universe. In this talk I will give a brief instrument overview and review the status of SIDE and its pathfinder, the mini SIDE. The SIDE project is lead by the Instituto de Astrofísica de Andalucia in Granada (Spain).
Abstract
Durante la segunda mitad del siglo XX la biología ha emergido de forma explosiva como una disciplina con enorme proyección de futuro con toda clase de implicaciones sociales. El origen de esta revolución fue el desciframiento en 1953 de la naturaleza de la información biológica, el ADN. La propia estructura de esta molécula explica la forma en que la información biológica está impresa y lleva implícita además el mecanismo de replicación, de forma que esta información se transmite de forma fidedigna de una generación a otra a lo largo de miles de millones de años de evolución. El estudio de la estructura, función y propiedades del ADN ha sido uno de los focos principales de atención de la Biología en los últimos 30 años, ha dado lugar a tecnologías muy poderosas de manipulación genética en diversos organismos y ha permitido desarrollar proyectos de gran calado, como el Proyecto Genoma Humano. El desarrollo de estas tecnologías es muy rápido y abre la posibilidad en un futuro no muy lejano de la modificación genética dirigida de la propia especie humana. Durante el coloquio se presentarán los hitos del conocimiento biológico que han conducido a la situación actual y se discutirán las promesas, perspectivas y problemas potenciales que ofrecerá la biología del siglo XXI.
Abstract
Dwarf galaxies, being the most numerous and fragile galaxy population, provide unique clues on both the formation of baryonic systems and the role played by the environment in galaxy evolution. In this short talk, I will present the main observational properties of the dwarf galaxy population in a sample of 88 nearby (z < 0.1) galaxy clusters drawn from the SDSS-DR4. By comparing the different properties (spatial and velocity distribution, colour, etc.) of red and blue dwarfs we attempt to constrain the scenarios for the evolution of galaxies in high-density environments.Abstract
The Virtual Observatory is an international initiative on standardizing astronomical data and protocols, as well as the development of scientific tools. Nowadays, the Virtual Observatory (VO) offers a number of powerful tools to manipulate and analyze catalogs, images, spectra and, of course, to inter-operate with the Virtual Observatory archives. In the SIE, we resume our SIEminar series, short and technical seminars, like this one in which Jorge will present the most interesting tools the Virtual Observatory offers.Upcoming talks
- Ciencia desde el espacio en España: hoja de ruta de la AEEDr. Isabel Pérez GrandeTuesday November 26, 2024 - 10:30 GMT (Aula)
- Revisiting mass transfer and accretion in symbiotic binaries in the Gaia eraDr. Jaroslav MercThursday November 28, 2024 - 10:30 GMT (Aula)