Recent Talks

List of all the talks in the archive, sorted by date.


FOi4k1UTh6k-thumbnail
Tuesday May 31, 2011
Prof. Athem Alsabti
University of London Observatory, UK

Abstract

In recent years, many countries throughout the Middle East - in particular the more prosperous states - have made great progress in education, higher education, and scientific research. However, this has not often been matched by equivalent progress in astronomy and its related fields, despite the fact that many nations in the region consider astronomy a fundamental part of their cultural and scientific heritage. The current status of astronomy in the individual countries of the Middle East will be reviewed. The positive decision of the International Astronomical Union (IAU) (Commission 46) to take a proactive role through visits and consultancy in the region will also be discussed, including the founding of MEARIM - the Middle East and Africa Regional IAU Meeting (first meeting held in Cairo 2008). The challenges and proposals to move forward teaching and research in astronomy in the Middle East will be considered, with comments relating North African countries and new trends, including space research along with astronomical activities.


zIAgRInUcb0-thumbnail
Friday May 27, 2011
Mr. Thomas Herbst
Institute for Quantum Optics and Quantum Information (IQOQI), University of Vienna, Vienna

Abstract

Teleportation of physical objects, transferring from one place to another without passing through intermediate locations, is not possible. However, teleportation of quantum states (the full information of quantum objects) is possible. Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. In this talk I will first give an introduction of quantum teleportation and then present our on?going free?space quantum teleportation experiment between the two Canary Islands La Palma and Tenerife, separated by 144 km. Our scheme combines a Bell?state measurement, capable to identify two of the four Bell?states, with an actively triggered unitary transformation depending on its outcome. The scheme achieves the optimal teleportation efficiency achievable with linear optical elements. Our work is essential for showing the feasibility of satellite?based experiments and is an important step towards quantum?communication applications on a global scale.


-thumbnail
Tuesday May 24, 2011
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

We compare the Hubble type and the spectroscopic class of the galaxies with spectra in SDSS/DR7. As it is long known, elliptical galaxies tend to be red whereas spiral galaxies tend to be blue, however, this relationship presents a large scatter, which we measure and quantify in detail. We compare the Automatic Spectroscopic K-means based classification (ASK) with most of the commonly used morphological classifications. All of them provide consistent results. Given a spectral class, the morphological type wavers with a standard deviation between 2 and 3 T types, and the same large dispersion characterizes the variability of spectral classes fixed the morphological type. The distributions of Hubble types given an ASK class are very skewed -- they present long tails that go to the late morphological types for the red galaxies, and to the early morphological types for the blue spectroscopic classes. The scatter is not produced by problems in the classification, and it remains when particular subsets are considered. A considerable fraction of the red galaxies are spirals (40--60 %), but they never present very late Hubble types (Sd or later). Even though red spectra are not associated with ellipticals, most ellipticals do have red spectra: 97 % of the ellipticals in the morphological catalog by Nair & Abraham, used here for reference, belong to ASK 0, 2 or 3. It contains only a 3 % of blue ellipticals. The galaxies in the green valley class (ASK~5) are mostly spirals, and the AGN class (ASK 6) presents a large scatter of Hubble types from E to Sd. We investigate variations with redshift using a volume limited subsample. From redshift 0.25 to now the galaxies redden from ASK 2 to ASK 0, as expected from the passive evolution of their stellar populations. Two of the ASK classes (1 and 4) gather edge-on spirals, and they may be useful in studies requiring knowing the intrinsic shape of a galaxy (e.g., weak lensing calibration).


-thumbnail
Tuesday May 24, 2011
Dr. Alexandre Vazdekis
Instituto de Astrofisica de Canarias, Spain

Abstract

We find a distinct stellar population in the counterrotating and kinematically decoupled core of the isolated massive elliptical galaxy NGC 1700. Coinciding with the edge of this core, we find a significant change in the slope of the gradient of various representative absorption line indices. Our age estimate for this core is markedly younger than the main body of the galaxy. We find lower values for the age, metallicity, and Mg/Fe abundance ratio in the center of this galaxy when we compare them with other isolated elliptical galaxies with similar velocity dispersion. We discuss the different possible scenarios that might have lead to the formation of this younger kinematically decoupled structure and conclude that, in light of our findings, the ingestion of a small stellar companion on a retrograde orbit is the most favored.


zG7d08MwBRs-thumbnail
Friday May 20, 2011
Prof. Ramesh Narayan
Harvard-Smithsonian Center, USA.

Abstract

In his public talk, Prof. Narayan will summarize our knowledge of Black Holes in the universe. He will describe how Black Holes are discovered, how their properties are measured, and what the results mean. He will also discuss the many ways in which Black Holes influence their surroundings and the profound effect they have had on the evolution of the universe.


JiA2OcY7ea4-thumbnail
Thursday May 19, 2011
Prof. Ramesh Narayan
Harvard-Smithsonian Center for Astrophysics, USA

Abstract

An astrophysical black hole is completely described with just two parameters: its mass and its dimensionless spin. A few dozen black holes have mass estimates, but until recently none had a reliable spin estimate. The first spins have now been measured for black holes in X-ray binaries. The talk will describe the method used to make these measurements and will discuss implications of the results obtained so far.


-thumbnail
Tuesday May 17, 2011
Dr. Martín López Corredoira
Instituto de Astrofísica de Canarias, Spain

Abstract

Milky Way and most spiral galaxies present some features in the outer part of its disk such as S-warping or U-warping, flaring, lopsidedness, truncation/non-truncation and others, both for the stellar and the gas component. In the present talk, I will review some of the galactic dynamics hypotheses which try to explain these features: either in terms of gravitational interaction, magnetic fields, accretion of intergalactic matter or others. The gravitational interaction may be among the different components of the galaxy or between the spiral galaxy and another companion galaxy. The accretion of intergalactic matter may be either into the halo, with a later gravitational interaction between the misaligned halo and the disc, or directly onto the disc. The phenomena of the outer disc in spiral galaxies might be produced by more than a mechanism. Nonetheless, the hypothesis of accretion of intergalactic matter onto the disc presents several advantages over its competitors, since it explains most of the relevant observed features, whereas other hypotheses only explain them partially.


LVl_9_gGUAs-thumbnail
Thursday May 12, 2011
Miss Sofia Meneses-Goytia
Kapteyn Instituut, Rijkuniversiteit Groningen, the Netherlands

Abstract

The present work shows the Spectral Energy Distributions (SEDs) in the near-infrared using the IRTF stellar library obtained using the models based on the Single Stellar population Models (SSP) from Vazdekis et al. (1996 - 2010) which work in the optical, and use the CaT and MILES stellar libraries. In this near-infrared research, the isochrones of Marigo et al. (2008) were chosen and which have a range of metallicity [Fe/H] between -2.27 and 0.019, and ages up to 15.85 Gy. Also, they provide the corresponding ?uxes in the IR bands I to M (0.7 to 5.0 microns). The IRTF stellar library contains spectra of 292 stars (F, G, K and M stars) at a resolution of 2000, between 0.8 to 5.2 microns. The features of the SED (spectrum obtained by the integration of the spectra of the stars, at constant metallicity and age) are analysed by comparing to those found on Ivanov et al. (2004) for the IR range. In addition, t he comparison of the models with galaxy observations of early type galaxies by Marmol-Queralto et al. (2009) are presented.


tNX30Fb67F8-thumbnail
Tuesday May 3, 2011
Miss Josefa Becerra
Instituto de Astrofísica de Canarias, Spain

Abstract

The MAGIC telescopes discovered very high energy (VHE, E>100 GeV) gamma-ray emission coming from the distant Flat Spectrum Radio Quasar (FSRQ) PKS 1222+21 (4C +21.35, z=0.432). It is the second most distant VHE gamma-ray source, with well measured redshift, detected until now. The detection coincides with high energy MeV/GeV gamma-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light, can be described by a single power law with photon index 2.72 ± 0.34 between 3 GeV and 400 GeV, consistent with gamma-ray emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the gamma-ray emission region to lie outside the Broad Line Region, which would otherwise absorb the VHE gamma-rays. On the other hand, the MAGIC measurement of a doubling time of about 9 minutes indicates an extremely compact emission region, in conflict with the "far dissipation" scenario. This result challenges jet emission models in FSRQs and indicates the importance of jet sub-structures.


1O5uxt1ugqs-thumbnail
Thursday April 28, 2011
Dr. Alberto Dominguez Diaz
Instituto de Astrofísica de Andalucia, Spain

Abstract

The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. Galaxy SED-type fractions from z=0.2-1 are estimated from a multi-wavelength sample from the AEGIS collaboration that allows a new determination of the evolving EBL. Then, the transparency of the Universe to very high energy (VHE) gamma-ray photons is derived. We find the maximum transparency of the Universe allowed by the standard framework. This result challenges current VHE observations of high redshift blazars. A solution to this problem is discussed utilizing VHE spectra of the highest redshift blazars assuming the existence of a plausible dark matter candidate known as axion-like particle.