Seminar
GALAPAGOS in C - computational study of galaxy morphologies
Resumen
Modern imaging surveys provide a fundamental tool in order to study the morphological
properties of galaxy populations in the nearby and the distant Universe. In order to
process a complete set of survey images, we designed GALAPAGOS-C. GALAPAGOS-C
unifies the detection of sources (via source extractor), postage stamp cutting, object
mask preparation, sky background estimation and complex two-dimensional light profile
Sérsic modeling (via GALFIT) in one automatic program. GALAPAGOS-C is designed
around the concept of MPI-parallelization, allowing the processing of large data sets
in a quick and efficient manner. Further, GALAPAGOS-C is capable of fitting multiple-
Sérsic profiles to each galaxy, each representing distinct galaxy components (e.g. bulge,
disc, bar), in addition to the option to fit asymmetric distortions with a Fourier mode
expansion to the axis-symmetric single-Sérsic isophotes. The modeling reliability of our
core single-Sérsic fitting capability and the optional Fourier mode expansion are tested
thoroughly using image simulations.
GALAPAGOS-C is applied to a sample of 2063 galaxies in the A901/902 galaxy cluster
(z ∼ 0.165) from the Space Telescope A901/902 Galaxy Evolution Survey (STAGES) and
an additional sample of 2876 field galaxies from the Galaxy Evolution From Morphology
And SEDs Survey (GEMS). We measure the distribution of Sérsic indices as a function of
local object density in the A901/902 cluster sample to provide one of the first measures
of the Sérsic index–density relation. In addition, we measure the distribution of lopsided
galaxies in the A901/902 cluster sample and quantify the intensity of lopsidedness in
the galaxies in the field since z ∼ 0.9 in order to study the evolution of lopsidedness as
a function of redshift. In each application, we study the correlations of the measured
parameters with other intrinsic and structural variables, e.g. the stellar mass, the color
or the presence or absence of a disk. Our results provide further clues on the evolution
of galaxy structure with cosmic time and the dependence on environment.
Sobre la charla
Univ. of Innsbruck
iCalendar Google Calendar