Found 8 talks width keyword solar activity
Abstract
Following Cowling's anti-dynamo theorem of 1933, there was a long period during which the very existence of dynamos was unclear. Even with the emergence of three dimensional simulations in the late 1980s, people were careful to distinguish true dynamos from just some sort of amplification. Meanwhile, we know of many examples of true dynamos - not only from simulations, but also from several laboratory experiments. Nevertheless, there are still problems, fundamental ones and also very practical ones. After all, we are really not sure how the solar dynamo works. Today, global three-dimensional simulations seem to have an easier time to reproduce the behaviors of superactive stars, but not really the group of inactive stars, to which also the Sun belongs. The Sun itself may actually be special; it has so well defined cycles and it is at the brink of becoming very different. Theoretically, slightly slower rotators should have antisolar rotation, but it is possible that some of those stars never become that slow if stellar breaking ceases for some reason. Sun and starspots are very evident indicators of solar and stellar activity. Their formation is also not well understood. Polarimetry reveals their magnetic helicity, which can be detected even with the solar wind.
Abstract
(This seminar is organized by the IAU G5 commission on stellar and planetary atmospheres)
Task-based computing is a method where computational problems are split
into a large number of semi-independent tasks (cf.
2018MNRAS.477..624N). The method is a general one, with application not
limited to traditional grid-based simulations; it can be applied with
advantages also to particle-based and hybrid simulations, which involve
both particles and fields. The main advantages emerge when doing
simulations of very complex and / or multi-scale systems, where the
cost of updating is very unevenly distributed in space, with perhaps
large volumes with very low update cost and small but important regions
with large update costs.
Possible applications in the context of stellar atmospheres include
modelling that covers large scales, such as whole active regions on the
Sun or even the entire Sun, while at the same time allows resolving
small-scale details in the photosphere, chromosphere, and corona. In
the context of planetary atmospheres, models of pebble-accreting hot
primordial atmospheres that cover all scales, from the surfaces of
Mars- and Earth-size embryos to the scale heights of the surrounding
protoplanetary disks, have already been computed (2018MNRAS.479.5136P,
2019MNRAS.482L.107P), and one can envision a number of applications
where the task-based computing advantage is leveraged, for example to
selectively do the detailed chemistry necessary to treat atmospheres
saturated with evaporated solids, or to do complex cloud chemistry
combined with 3-D radiative transfer.
In the talk I will give a quick overview of the principles behind
task-based computing, and then use both already published and still
on-going work to illustrate how this may be used in practice. I will
finish by discussing how these methods could be applied with great
advantage to problems such as non-equilibrium ionization, non-LTE
radiative transfer, and partial redistribution diagnostics of spectral
lines.
Abstract
A solar flare involves the conversion of magnetic energy stored in the coronal magnetic field into the kinetic energy of thermal and non-thermal particles, mass motion, and radiation. How this happens remains a central question in solar physics. A particular long-standing puzzle is how such a high fraction of the stored magnetic energy - up to a half - arrives in the kinetic energy of accelerated non-thermal particles. In this talk I will present an observational overview of solar flares with an emphasis on accelerated particles, discuss some ideas and constraints on particle acceleration, and present some new observations of the possible role of plasma turbulence in the acceleration process.
Abstract
The Sun is an active star that influences the Earth as well as the entire solar system. Most dynamic phenomena on the Sun are observed as coronal mass ejections (CMEs) and flares. CMEs present massive clouds of magnetized plasma having speeds up to a few thousand km/s, that may propagate over Sun-Earth distance within less than a day and may cause strong geomagnetic disturbances at Earth (Space Weather). As CMEs are optically thin, using remote sensing data measurements of intrinsic properties such as speed, width, propagation direction, density etc. are severely affected by projection effects. By combining image data with in-situ measurements, valuable information is provided enabling CME 3D analyzes, and with that facilitate a better quantification of the uncertainties in the observational measurements that are used to feed CME propagation models. With that, a much better understanding of CMEs as they propagate in interplanetary space could be gained.
The talk will cover the physisc about CME-flare phenomena, the interplanetary propagation behavior of CMEs related to the background solar wind, and Space Weather forecasting.
Zoom link: https://rediris.zoom.us/j/92170419398
Abstract
Magnetic fields break through the solar surface in a hierarchy of magnetic elements ranging from Earth-sized sunspots down to tiny concentrations that are barely resolved in the highest-resolution photospheric images. In the chromosphere they combine in intricate, highly dynamic, and continuously evolving fibrilar patterns. Movements of the photospheric field-line footpoints drive, guide, and control the flows of energy and mass into the corona, and trigger energy-releasing magnetic reconnection through relentless topological rearrangement. The conversion from convectively driven footpoint motion to outer-atmosphere outflows and loading takes place in the dynamic, fine-structured chromosphere.
A number of important facilities for observing the solar chromosphere have recently come on line (e.g. the SDO and IRIS satellites and ground-based Fabry-Perot interferometers) or will become operational in the near future (e.g. DKIST). The overwhelming complexity of the chromosphere makes it necessary to have numerical simulations for the interpretation of the observations. Such realistic simulations, spanning the solar atmosphere from the convection zone to the corona, are now becoming feasible.
This presentation will introduce the fascinating aspects of chromospheric physics and review recent results from both observations and numerical simulations.
Abstract
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13G and 33G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm2 and 0.85 BPs/Mm2, respectively.Abstract
The Sun presents us with many unsolved mysteries. In this talk I discuss three of them that have intrigued me for the last 50 years. Solar flares are the most powerful explosions in space between here and the nearby stars. The only viable power source is stored magnetic energy. Yet definitive observations of changes in the magnetic field associated with flares have been lacking until recently. Measurements with the GONG network have helped to address this mystery and the results are surprising. Efforts to observe the weak magnetic fields in the solar photosphere date nearly to the discovery of magnetism on the Sun. Improvements in observational capabilities have made this area a 'hot' topic with many important contributions from people at the IAC. High resolution observations are clarifying many features. I will focus on the role played by lower resolution work in defining the uniformity of the still mysterious weak magnetic fields over large spatial and temporal scales. Physics changes from hydrodynamic to magnetic dominance as one moves upward from the photosphere to the chromosphere. This leads to significant and complicated changes in the magnetic field in both the active and quiet Sun. Observations of the chromospheric magnetic field show several unexpected and mysterious features. Solving these mysteries will be an exciting area as observational and spectral inversion capabilities develop.Abstract
The quiet Sun (the 99%, or more, of the solar surface not covered by sunspots or active regions) is receiving increased attention in recent years; its role on the global magnetism and its complexity are being increasingly recognised. A picture of a rather stochastic quiet Sun magnetism is emerging. From these recent works, the quiet Sun magnetism is presented as a myriad of magnetic field vectors having an isotropical distribution with a cascade of scales down to the mean free path of the photon. But this chaotic representation also shows clear signs of intermittency: at a low frequency rate (0.022 events h-1 arcsec-2) the magnetic field appear in the quiet Sun forming well-organised loop structures at granular scales. More interesting, these loops rise to higher layers and their energy input into the chromosphere can be important for the heating of this layer. In the talk, I will present a pedagogic view of the quiet Sun magnetism. I will focus on the ascent of the smallest ever observed magnetic flux emergence through the solar atmosphere. More specifically, I will show how to infer from high resolution, spectro-polarimetric observations (taken with the SOT instrument onboard Hinode) the magnetic topology of the fields, how they rise through the photosphere to the chromosphere, and the implications of this phenomena for chromospheric (and coronal) heating.
« Newer Older »
Próximas charlas
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)