Found 3 talks width keyword Sunyaev-Zeldovich
Abstract
Simons Observatory (SO) is a new Cosmic Microwave Background telescope currently under construction in the Atacama Desert, close to ALMA and other recent CMB telescopes. It will have six small aperture (42cm) telescopes (SATs), and one large aperture (6m) telescope (LAT), observing at 30-280GHz (1-10mm) using transition edge sensors (TES) and kinetic inductance detectors (KIDs). As well as observing the polarisation of the CMB to unprecedented sensitivity, the LAT will perform a constant survey at higher angular resolution, enabling the systematic detection of transient sources in the submm, with large overlap of optical surveys such as LSST, DESI and DES. As well as giving an overview of SO, I summarise the types of transient sources that are expected to be seen by SO, including flaring stars, quasars, asteroids, and man-made satellites.
Abstract
In cosmology, it is customary to convert observed redshifts into distances in order to study the large scale distribution of matter probes like galaxies and quasars, and to obtain cosmological constraints thereof. In this talk, I describe a new approach which bypasses such conversion and studies the "field of redshifts" as a new cosmological observable, dubbed thereafter as angular redshift fluctuations (ARF). By comparing linear theory predictions to the output of N-body cosmological simulations, I will show how the ARF are actually sensitive to both the underlying density and radial peculiar velocity fields in the universe, and how one can obtain cosmological and astrophysical constraints from them. And since "the prove of the pudding is in the eating", I will demonstrate how ARF provide, under a very simple setup, competitive constraints on the nature of peculiar velocities and gravity from BOSS DR13 data. Furthermore, I will also show that by combining ARF with maps of the cosmic microwave background (CMB), we can unveil the signature of the missing (and moving) baryons, doubling the amount of detected baryons in disparate cosmic epochs ranging from z=0 up to z=5, and providing today's most precise description of the spatial distribution of baryons in the universe.
Abstract
The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. I will present the first scientific results of the mission, which appeared as a series of 26 papers at the beginning of this year 2011, covering a variety of astrophysical topics. In particular, I will focus on the results on galactic diffuse emissions, as well as the first results on galaxy clusters detected by means of the Sunyaev-Zeldovich effect.
« Newer Older »
Próximas charlas
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)