Found 30 talks width keyword star forming galaxies

jpvOD2fVm-I-thumbnail
Tuesday September 5, 2023
University of Edinburg

Abstract

Nebular emission lines are a powerful diagnostic tool for tracing the chemical evolution in star-forming galaxies (SFGs) across cosmic time. Due to their proximity, SGFs are ideal for studying the physical properties, stellar population, and nebular gas in much more detail. The COS Legacy Spectroscopy SurveY (CLASSY) is a treasury survey that comprises UV+optical spectra of 45 local SFGs covering a broad range of physical properties. In this talk, I present the results of the physical conditions and metallicities for the CLASSY sample focused on the impact of the aperture effects of the inferred metallicities and the abundance patterns of several elements. We found that the results for the inferred electron density, temperature, and metallicity derived using different aperture sizes, 1″-3″, are consistent, indicating a uniform mapping of the nebular gas. We also showed that the physical properties derived from the optical are appropriate for observations in the far-UV, allowing a better interpretation of the interplay between the stellar and gas components. I will also discuss the results of the Ne/O, Cl/O, S/O, and Ar/O vs. O/H relations and their behaviour with different galaxy properties (e.g., stellar mass and star formation rate). We found that such abundance ratios follow a constant trend with O/H as expected, except for Ne/O and Ar/O, which show a significant trend at high metallicities. We discuss the scatter involved in the N/O versus O/H relation and its connection with the different UV+optical observables. Finally, we compare these results with the chemical abundances derived at z > 6 galaxies observed with the JWST.


nBbFGfhVS10-thumbnail
Friday May 26, 2023
Universidad Nacional Autonoma de Mexico

Abstract

We present the extended data release of the Calar Alto Legacy Integral Field Area (CALIFA) survey (eDR). It comprises science-grade quality data for 895 galaxies obtained with the PMAS/PPak instrument at the 3.5 m telescope at the Calar Alto Observatory along the last 12 years, using the V500 setup (3700-7500Å, 6Å/FWHM) and the CALIFA observing strategy. It includes galaxies of any morphological type, star-formation stage, a wide range of stellar masses ( ∼10^7-10^12 Msun), at an average redshift of  ∼0.015 (90\% within 0.005 < z <0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneously re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides an (almost) seeing-limited spatial resolution (FWHM PSF  ∼1.0").  Furthermore we present the analysis performed using the pyPipe3D pipeline for these dataset. We include a description of (i) the analysis performed by the pipeline, (ii) the adopted datamodel for the derived spatially resolved properties and (iii) the catalog of integrated, characteristics and slope of the radial gradients for a set of observational and physical parameters derived for each galaxy. All these data has been distributed through the following webpage: http://ifs.astroscu.unam.mx/CALIFA_WEB/public_html/


uGM06PiiHNM-thumbnail
Thursday February 16, 2023
Astronomy Department of the Physics Institute of the Federal Universisty of Rio Grande do Sul (UFRGS)

Abstract

 

Since the pioneering studies linking the mass of supermassive black holes (SMBH) with the velocity dispersion of their host galaxies bulges it has become accepted that the products of active galactic nuclei (AGN) accretion and star-formation (SF) are somehow related. It is also accepted that nuclear SF and AGN can coexist in the inner region of galaxies, suggesting that the growth of SMBH (by gas accretion) and galaxies (by forming stars) are coupled.  In terms of galaxy evolution, it is established that AGN feedback plays a fundamental role by impacting SF (quenching, suppressing, or triggering). Cosmological simulations performed without the inclusion of feedback (SNR/AGN) effects are not able to reproduce the low and high luminosity ends of the galaxy luminosity function and underestimate the ages of the stars of the most massive galaxies when compared with observations.  While observations have shown that nuclear star formation is common in AGNs, properly measuring the stellar population properties in AGNs hosts is particularly difficult, since the active nucleus will dilute the absorption features and contribute to a large number of ionizing photons that will make it difficult to use emission line fluxes to infer the stellar properties.  In this seminar, I will discuss the results we have obtained in our group when mapping the stellar population in the inner region of active galaxies, with a special focus on the near-infrared spectral region, which allows for a better untangling of the AGN and stellar contributions for the spectral energy distribution of the galaxies. 
Zoom: https://rediris.zoom.us/j/81704623667?pwd=ejRHci8vTUR0QmZ5YkxrNTVoRU9mQT09

Meeting ID: 817 0462 3667
Passcode: 643393


pZUB4MzIdh4-thumbnail
Thursday December 15, 2022
Univ. Genève

Abstract

In this talk, I will present recent results on a new sample of extremely UV-luminous star-forming galaxies at z=2-4 discovered within the 9000deg^2-wide Baryon Oscillation Spectroscopic Survey database of the Sloan Digital Sky Survey. These puzzling sources show apparent magnitudes rivaling those of bright QSOs, but without any hint of AGN activity or being magnified by gravitational lensing. Instead, these sources are characterized by very young stellar populations (~ 10 Myr) and compact morphologies. The two highest-redshift sources in our sample show very high Lyman continuum (LyC, with >13.6 eV) escape fractions, up to fesc(LyC)~90%, being the most powerful ionizing sources identified so far among the star-forming galaxy population, both in terms of the intrinsic LyC photon production rate and escape. With SFRs~1000 Msun/yr, but almost un-obscured, and specific star formation sSFR >50-100 Gyr^-1, these sources are very efficient star-forming galaxies, possibly representing a short-lived phase in the evolution of massive and compact galaxies. I will highlight some unique properties observed in these sources including LyC emission, complex Lyman-alpha profiles, strong wind lines, SEDs, among others. Finally, I discuss the properties of these UV-bright sources in the broad context of galaxy formation and evolution, and possible implications to cosmic reionization.


KIwpPb7SFsM-thumbnail
Thursday May 19, 2022
IAC

Abstract

Black hole feedback is central to our theoretical understanding of galaxies. The energy and momentum radiated by growing supermassive black holes is expected to regulate the baryonic cycle, in particular, within massive dark matter halos, modulating gas cooling and thus star formation. Observational evidence of the role of black hole feedback remains, however, scarce, casting serious doubt on our current galaxy formation modelling. In this talk I will summarize our recent efforts trying to empirically characterize the effect of black hole feedback on galactic scales. I will describe how the combination of detailed stellar population analysis and well-known scaling relations can be used to actually constrain the physical processes behind black hole feedback. Moreover, I will also present evidence of black hole feedback acting beyond the host galaxy, further supporting the importance of black hole feedback in regulating the evolution of galaxies.


6OYeD5KRoUE-thumbnail
Thursday December 2, 2021
Kavli Cambridge

Abstract

In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.


HS5XCzpEPCc-thumbnail
Thursday November 25, 2021
Lund Observatory

Abstract

The formation and evolution of galaxies across cosmic time proceeds in different phases, paced by their internal evolution and external factors like gas accretion and mergers. The complex and always changing interplay between these mechanisms drives the assembly of galaxies and the physical conditions for star formation, which leaves observable imprints on the stellar populations. Large astrometric and spectroscopic surveys (e.g. Gaia, APOGEE, GALAH) collect the signatures of these past events in the building history of the Milky Way. However, simulations and models are necessary to decode the data. In this talk, I will present results from a series of hydrodynamical simulations of Milky Way-like galaxies, both in isolation and in cosmological context using the VINTERGATAN simulation. I will show the crucial role of mergers, and of the end of the merger phase, in forming the thick and thin Galactic discs, and making the transition between the two. I will then nuance this conclusion by explaining why the secular consumption of gas enables a similar transition, as well as the emergence of spirals, without any external factors.


DpIEI9jXNO0-thumbnail
Thursday July 8, 2021
UNAM

Abstract

We summarize here some of the results reviewed recently by Sanchez (2020) and Sanchez  et al. (2021), comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. We review our current knowledge of the spatially resolved spectroscopic properties of low-redshift star-forming galaxies (and their retired counterparts) using results from the most recent optical integral field spectroscopy galaxy surveys. We briefly summarize the global spectroscopic properties of these galaxies, discussing the main ionization processes, and the global relations described by the star-formation rates, gas-phase oxygen abundances, and average properties of their stellar populations (age and metallicity) in comparison with the stellar mass. Then, we present the local distribution of the ionizing pro-cesses down to kiloparsec scales, and how the global scaling relations found using integrated parameters (like the star-formation main sequence, mass–metallicity relation, and Schmidt–Kennicutt law) have local/resolved counterparts, with the global ones being, for the most part, just integrated/average versions of the local ones.  The main conclusions of the most recent explorations are that the evolution of galaxies is mostly governed by local processes but clearly affected by global ones.


CJYHFxrI7Rg-thumbnail
Thursday May 27, 2021
INAF/Trieste

Abstract

This talk will be dedicated to luminous (LBol~1E47 erg/s),
high-redshift quasars, which are ideal targets to investigate (i) feedback
from SMBHs, and (ii) the early growth phases of giant galaxies. I will
present evidence of  SMBH-driven outflows  at all Cosmic epochs, back to
the early Universe. These outflows involve all gas phases (molecular,
neutral, ionised) and extend on nuclear to galactic and circum-galactic
scales. I will report on the first systematic study of the molecular gas
properties in the host-galaxies of the most luminous quasars, fundamental
to probe the impact of SMBH feedback on the host-galaxy evolution. I will
show that luminous quasars pinpoint high-density sites where giant galaxies
assemble, and I will discuss the major contribution of mergers to the final
galaxy mass. To this aim, I will present a wealth of multi-wavelength (UV
to sub-millimeter) observations from the WISE/SDSS hyper-luminous quasars
survey  at z~2-5 (WISSH), and recent results from the ESO large program
XQR-30, the Ultimate X-SHOOTER Legacy Survey of Quasars at the Reionization
epoch.

 


2QJX4Ot1SPk-thumbnail
Thursday June 13, 2019
IAC

Abstract

Although the name 'fundamental metallicity relation' (FMR) may sound a bit bombastic, it really represents a fundamental relation in the sense of revealing a fundamental process in galaxy formation. Numerical simulations predict that accretion of cosmic web gas feeds star formation in star-forming galaxies. However, this solid theoretical prediction has been extremely elusive to confirm. The FMR, i.e., the fact that galaxies of the same stellar mass but larger star formation rate (SFR) tend to have smaller gas-phase metallicity (Zg), is one of the best observational supports available yet. The talk will introduce the FMR and then present recent results of our group showing how the FMR emerges from a local anti-correlation between SFR and Zg existing in the disks of galaxies. Thus, understanding the FMR is equivalent to understanding why active star-forming regions tend to have low relative metallicity. The existence of the local anti-correlation SFR-vs-Zg is found by Sanchez-Menguiano+19 ApJ  and Sanchez Almeida+18 MNRAS, whereas the equivalence between local and global laws is in Sanchez Almeida & Sanchez-Menguiano 19 ApJL.


« Newer 1 | 2 | 3 Last >>

Próximas charlas


More upcoming talks

Últimos Coloquios


Últimas charlas