Found 14 talks width keyword Galactic halo

Or79N9L25so-thumbnail
Thursday June 8, 2023
Leibniz Institute for Astrophysics Potsdam, AIP, Germany

Abstract

 

In this seminar I will focus on how the avalanche of new data changes our views on how our Galaxy formed and evolved. Precise astrometric, spectroscopic, photometric and asteroseismic data can be combined to pin down different processes that have shaped the Milky Way. This data will be discussed and illustrated with examples of what is possible to achieve by combining chemistry , kinematics and age information. In particular, the impact of asteroseismology of red giants on Galactic Archaeology in the context of large spectroscopic surveys will be highlighted. Finally, it will be shown why more data is needed and what are some of the future plans for the next 10-20 years.

i1KS2YngkMA-thumbnail
Thursday April 27, 2023
IAC

Abstract

The previous years have witnessed a big leap forward in our understanding of the Milky Way. Thanks to the highly accurate astrometry and photometry provided by the Gaia mission in combination with large photometric and spectroscopic all-sky surveys, we have now a clearer view of the chemo-dynamics of the stellar populations that constitute our Galaxy. Our former characterization of the Milky Way components (the bulge, halo, and thick and thin discs) is now compromised by the latest discoveries and their limits are blurrier than ever. However, hints on the kind of events and processes that led to the formation of our Galaxy emerge from the analysis of these high-quality data. In this talk I will review the latest results about what caused the current stellar halo configuration and the observational evidences of the dawn of the Milky Way’s disc. I will also present the project carried out at the ULL/IAC to derive the star formation history of the Milky Way which will provide the temporal information that is still missing in Galactic research.

 

 

 

https://rediris.zoom.us/j/85737198942?pwd=dG1lYmNVRjR3dzRGZFhldUhGRloyUT09
ID de reunión: 857 3719 8942

Código de acceso: 350472

https://youtube.com/live/i1KS2YngkMA?feature=share


UrlxqO3OGoc-thumbnail
Tuesday February 14, 2023
Observatoire Astronomique de Strasbourg

Abstract

Dwarf galaxies are powerful tools of near-field cosmology and galactic archaeology: their numbers, distribution, and star formation can be linked to both the tenets of LCDM (the missing satellite "problem," their (an)isotropic distribution, their dark matter content) and to the build up of their hosts and their environment (accretion, quenching). The exquisite detail offered by observation of the nearby Milky Way dwarf galaxies has built a picture of what dwarf galaxies are and how they evolved through time. In this talk, I will review the increasingly sharp view we are building of the dwarf-galaxy system of the Milky Way's "sister" galaxy, Andromeda, and emphasize key similarities and differences between these two systems of satellites in the hope to learn what features are common or, on the contrary, driven by the different pasts of the Milky Way and Andromeda.


yAt24_9X0ro-thumbnail
Thursday January 19, 2023
IAC

Abstract

I will review the status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a project led from the IAC with the aim of characterising the polarisation of the Cosmic Microwave Background (CMB) and other galactic or extragalactic physical processes that emit in microwaves in the frequency range 10-42GHz, and at large angular scales (1 degree resolution). QUIJOTE consists of two telescopes and three instruments operating from the Teide Observatory, and started operations about 10 years ago, in November 2012.

I will discuss the status of the project, and I will present the latest scientific results associated with the wide survey carried out with the first QUIJOTE instrument (MFI) at 11, 13, 17 and 19GHz, covering approximately 29000 deg$^2$ with polarisation sensitivities in the range of 35-40 $\mu$K/deg. These MFI maps provide the most accurate description we have of the polarization of the emission of the Milky Way in the microwave range, in a frequency domain previously unexplored by other experiments. These maps provide a unique view of the Galactic
magnetic field as traced by the synchrotron emission. These results have been presented in an initial series of 6 scientific articles published on January 12th, 2023.

Finally, I will describe the prospects for future CMB observations from the Teide Observatory.


-thumbnail
Thursday November 10, 2022
OCA

Abstract

To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.

 

To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. 
Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.

ns78Go3FM7I-thumbnail
Thursday November 3, 2022
CITIC / UDC

Abstract

After placing the Gaia mission in the context of current astrophysical research, the astrometric, photometric, and spectroscopic data provided by the satellite, as presented in its third data archive, DR3, will be reviewed. Gaia third archive contains, in addition to the measurements from the satellite's instruments, an extensive set of astrophysical parameters derived by the DPAC data processing consortium, for stars, unresolved galaxies, and solar system objects. These parameters correspond to about 1.8 billion sources repeatedly observed by the satellite during the first 34 months of operation. In the case of the Milky Way stars, DR3 contains information for about 1% of its stars, which has made it possible, for the first time, to study the dynamics of the disk and the halo, and to reconstruct the tumultuous evolutionary history of our galaxy, which is etched in its halo. Studying the integrals of the motion and the orbital actions, some 15 episodes of accretion of other galaxies by our galaxy have been identified, which shows that our Galaxy is the result of billions of years of "galactic canibalism". Accretion phenomena and tidal current trails are frequently observed in other galaxies and show that our Universe evolves through a hierarchical formation of galaxies.

-------------------------------------------------

Meeting will be held online

Youtube: https://youtu.be/ns78Go3FM7I

Zoom: https://rediris.zoom.us/j/87455295473?pwd=dnd2SkppQ1F2UlN2K0FLbmlLZEFmZz09

Meeting ID: 874 5529 5473

Passcode: 941406


q1b98yBliFQ-thumbnail
Thursday October 20, 2022
INAF-Osservatorio di Capodimonte, Naples, Italy

Abstract

The Magellanic Clouds (MCs) are the closest example of a three-body
interacting system composed of the Milky Way (MW), the Large Magellanic Cloud
(LMC), and the Small Magellanic Cloud (SMC). Therefore, the unique opportunity
provided by their relative proximity allowed us to analyse with matchless detail
the dynamical and morphological evolution that a galaxy experience as a
consequence of the mutual gravitational interaction with its neighbors. In this
context, we performed a multi-faceted analysis, taking advantage of astrometric,
kinematics, and photometric data, with the main goal of unveiling the past
evolutionary path of the MCs and their intense interaction history. We tackled
this task by using two complementary approaches: (i) we adopted the properties
of the MCs star cluster (SC) system to get insights into their past evolution
and (ii) we probed the low-luminous regime of the outer regions of the MCs as
they are the most sensitive to recent or past tidal stripping events. I will
discuss the main outcomes up-to-date of this project and its future perspectives
in light of the new ongoing facilities.

Zoom link: https://rediris.zoom.us/j/81617686828?pwd=YUpBMXpobUpnYzlpUzluTGo1N2hRQT09

Meeing ID: 816 1768 6828

 Passcode: 990310

https://youtu.be/q1b98yBliFQ



HvHeLJu4_5Q-thumbnail
Thursday September 15, 2022
Observatorio de Roma

Abstract

The first Gigayears of our Galactic halo can be probed by using ancient stellar populations as traced by RR Lyrae stars. Today, with the advancement in our knowledge of RR Lyrae properties belonging to the Halo and to Milky Way satellite systems (Globular clusters and dwarf galaxies) we are able
to provide solid constraints on the link between these stellar systems. Here, we present some recent results concerning the Halo formation by using a detailed evolutionary analysis of RR Lyrae stars for which chemical abundances are available.


o0J6h2Ipo2k-thumbnail
Thursday May 12, 2022
IoA Cambridges

Abstract

I discuss the dynamical interactions between the Milky Way and its satellite galaxies, focusing on the closest and most massive satellites - the Large Magellanic Cloud (LMC) and the Sagittarius dwarf galaxy. The former just has had its first close encounter with the Milky Way very recently, and the latter has been orbiting our Galaxy for several Gyr and is tidally disrupting, leaving a prominent tidal stream spanning the entire sky. Thanks to the abundant and precise observational data from the Gaia satellite and various spectroscopic surveys, we now have a very detailed view of the Sagittarius stream and the remnant. It appears that to reproduce its observed properties, one needs to take into account the gravitational effect of the LMC itself and the effect that it produces on the motion of the Milky Way: an intricate dance of three galaxies. The LMC also affects the motion of other streams and satellite galaxies in the outskirts of the Milky Way, and I discuss an approach for compensating these perturbations in the context of dynamical modelling of the Milky Way mass distribution and the analysis of satellite orbits.


-thumbnail
Thursday February 17, 2022
Kayptern institute

Abstract

The lowest metallicity stars that still exist today represent a window into the early Universe. Studying these stars gives us a local avenue to guide our understanding of star formation and supernova feedback in the early Universe, the early build-up of galaxies like our Milky Way, and the epoch of reionization. In this talk I will present recent results of the Pristine survey, a narrow-band photometric survey of the Milky Way designed to get metallicity information for millions of stars very efficiently. I will discuss what we have learned from our analysis of the most metal-poor stars about the early formation of the Milky Way. Moreover, I will highlight the bright future for this type of study in synergy with the upcoming highly-multiplexed spectroscopic surveys.


« Newer 1 | 2 Last >>