Found 16 talks width keyword globular clusters
Abstract
Abstract
The first Gigayears of our Galactic halo can be probed by using ancient stellar populations as traced by RR Lyrae stars. Today, with the advancement in our knowledge of RR Lyrae properties belonging to the Halo and to Milky Way satellite systems (Globular clusters and dwarf galaxies) we are able
to provide solid constraints on the link between these stellar systems. Here, we present some recent results concerning the Halo formation by using a detailed evolutionary analysis of RR Lyrae stars for which chemical abundances are available.
Abstract
The lowest metallicity stars that still exist today represent a window into the early Universe. Studying these stars gives us a local avenue to guide our understanding of star formation and supernova feedback in the early Universe, the early build-up of galaxies like our Milky Way, and the epoch of reionization. In this talk I will present recent results of the Pristine survey, a narrow-band photometric survey of the Milky Way designed to get metallicity information for millions of stars very efficiently. I will discuss what we have learned from our analysis of the most metal-poor stars about the early formation of the Milky Way. Moreover, I will highlight the bright future for this type of study in synergy with the upcoming highly-multiplexed spectroscopic surveys.
Abstract
Galactic globular clusters have always been at the crossroad of several investigations in both Stellar and Galactic Astrophysics. For long time, they have been considered the prototypes of Simple Stellar Populations, and hence used for testing and calibrating stellar evolutionary models as well as population synthesis tools. Nowadays, after the discovery of the presence of multiple stellar populations in almost all Galactic GCs, we know that this assumption is no longer valid. The process(es) of formation and early evolution of these star clusters is (are) very far to be understood, and any scenario so far envisaged is severely challenged by the pletora of empirical evidence collected till now. In the same time, thanks to the availability of an impressive observational framework - collected by combining kinematic measurements from Gaia mission, with data provided by large spectroscopic and photometric surveys -, GCs are playing a crucial role for our understanding of the assembly history of the Milky Way. We will review our present knowledge about these important stellar systems, discussing the several, open issues related to their formation/evolution, and discuss how we can use them in our effort to depict the Milky Way assembly history.
Abstract
At present, our understanding of the formation history of the MW is limited due to the complexity of observing the imprints of accretion events and of reproducing them in numerical simulations. Moreover, though being the only galaxy, in which the Galactic potential can be probed in detail, the distribution of mass in the MW, and hence of the dark matter, is poorly constraint, especially at large distances. In addition, the MW is not isolated, and it has recently been suggested that the infall of the LMC can induce a perturbation in the stellar and dark matter distribution of the MW. As a consequence, the details of the formation history of our Galaxy are still unknown, such as the number of accretion events, the mass of the accreted galaxies, and the epoch of these events. Yet this information is crucial to understand our environment and to constrain the theoretical models and simulations that try to reproduce it.
One of the major challenges of the field is that a tremendous number of multi-aspect (astrometric, photometric and spectroscopic) observations at significant depth is required to study the morphology, the kinematics and the chemistry of the outskirts of our Galaxy, where are located the signatures of these events. Hopefully, the advent of recent and incoming complementary large surveys, such as the European Gaia mission, UNIONS (Ultraviolet Near Infrared Optical Northern Survey), Pristine, Pan-STARRS (PS), WEAVE or LSST (Legacy Survey of Space and Time), is offering a new global point of view on our Galaxy’s halo, allowing us to precisely probe the Galactic potential our the MW, and to retrace itsaccretion history.
In this talk I will present recent works that have been conducted to better catarerized our Galaxy and its history with some of the existing surveys mentioned above. In addition, I will present the major improvement that will bring this new generation of large, multi-aspect surveys, to study both our Galactic history, as well as the fundamental nature of the dark matter.
Abstract
In this talk I will discuss how the stellar, globular cluster (GC), and gas components of galaxies allow us to trace the assembly of galaxies and their dark matter (DM) haloes, and how they constrain the complex physics of galaxy formation. I will use examples from three studies: in the first one, I will describe how the study of the phase-space distribution of the MW GC system using Gaia in the context of the E-MOSAICS simulations provides a detailed quantitative picture of the formation of the Galaxy. In the second example, I will show how the unusual GC populations in galaxies like the infamous NGC1052-DF2 and DF4 can be used to rewind the clock and obtain a snapshot of their galactic progenitors at cosmic noon. A simple model of star cluster formation points to an extremely dense birth environment and strong structural evolution, providing clues of the effect of clustered star formation on galaxy evolution. In the last part I will describe a follow-up study of the impact of clustered star formation on galaxy structure that provides clues on the origin of ultra-diffuse galaxies (UDGs), which are difficult to explain in the current paradigm of galaxy formation. I will show how anchoring an analytical model on galaxy scaling relations and numerical simulations predicts the emergence of UDGs that lack DM driven by clustered feedback from young GCs.
Abstract
Globular clusters (GCs) are fascinating objects nearly as old as the Universe that provide insight on a large variety of astrophysical and cosmological processes. However, their formation and their early and long-term evolution are far from being understood. In particular, the classical paradigm describing GCs as large systems of coeval stars formed out of chemically homogeneous material has been definitively swept away by recent high-precision spectroscopic and deep photometric observations. These data have provided undisputed evidence that GCs host multiple stellar populations, with very peculiar chemical properties. In this talk, I will review the properties of these multiple populations, before presenting the different scenarios that have been proposed to describe their formation. I will focus on the (many) current theoretical issues and open questions.
Abstract
I will talk about our current understanding of globular cluster (GC) formation and what we have yet to learn about them. I will particularly focus on the chemical and dynamical properties of the neglected GC NGC4372, which I studied for the first time with high-resolution spectroscopic observations.
Its chemical abundances revealed it as a typical representative of the old, metal-poor halo group. More interesting, however, are its structural and kinematic properties as the cluster has an unusually high intrinsic rotation for its metallicity and appears to be rotationally flattened. I will discuss what
rotating GCs tell us about their early evolution.
Abstract
Since the early 50' of last century the study of Horizontal Branch stars in Galactic GCs has been of pivotal relevance since the core He-burning stage is an 'amplifier' of any evolutionary/physical process occurring during the early evolutionary stages. Thanks to the huge observational effort devoted to this issue many outstanding 'anomalies' have been discovered concerning the physical properties of GC HB stars. The situation is becoming more complex when accounting for the discovery of the Multiple Population phenomenon in Galactic GCs. We will review the main anomalies related to the HB evolutionary stage, their (when available) theoretical interpretations, and current shortcomings. We will also discuss how the discovery of the Multiple Population Phenomenon offers a new approach for interpreting many observational evidence.
Abstract
In the past few years, a series of discoveries have been made of objects which appear to be accreting stellar mass black holes in globular clusters -- both in the Milky Way and in other nearby galaxies. I will discuss why the theoretical work which suggested that such objects would be unlikely to exist, the observations showing they do exist, some of the unusual aspects of some of the individual sources, and the new theoretical framework for producing them.
« Newer 1 | 2 Older » Last >>
Próximas charlas
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)