Found 4 talks width keyword nebulae
Abstract
Nebular emission lines are a powerful diagnostic tool for tracing the chemical evolution in star-forming galaxies (SFGs) across cosmic time. Due to their proximity, SGFs are ideal for studying the physical properties, stellar population, and nebular gas in much more detail. The COS Legacy Spectroscopy SurveY (CLASSY) is a treasury survey that comprises UV+optical spectra of 45 local SFGs covering a broad range of physical properties. In this talk, I present the results of the physical conditions and metallicities for the CLASSY sample focused on the impact of the aperture effects of the inferred metallicities and the abundance patterns of several elements. We found that the results for the inferred electron density, temperature, and metallicity derived using different aperture sizes, 1″-3″, are consistent, indicating a uniform mapping of the nebular gas. We also showed that the physical properties derived from the optical are appropriate for observations in the far-UV, allowing a better interpretation of the interplay between the stellar and gas components. I will also discuss the results of the Ne/O, Cl/O, S/O, and Ar/O vs. O/H relations and their behaviour with different galaxy properties (e.g., stellar mass and star formation rate). We found that such abundance ratios follow a constant trend with O/H as expected, except for Ne/O and Ar/O, which show a significant trend at high metallicities. We discuss the scatter involved in the N/O versus O/H relation and its connection with the different UV+optical observables. Finally, we compare these results with the chemical abundances derived at z > 6 galaxies observed with the JWST.
Abstract
Using ~320h of good-quality Crab data from Feb 2007 to Apr 2014 the MAGIC telescopes measured the most energetic pulsed photons from a pulsar to date. The new results obtained probe the Crab Pulsar as the most compact TeV accelerator known to date. The remarkable detection of pulsed emission up to 1.5 TeV revealed by MAGIC imposes severe constraints on where and how the underlying electron population produces gamma-rays at these energies. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least 5E6. These results strongly suggest IC scattering off low-energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder, requiring a revision of the state-of-the-art models proposed to explain how and where gamma-ray pulsed emission from 100 MeV to 1.5 TeV are produced. Investigating the extension of the very high-energy spectral tail of the Crab Pulsar at energies above 400 GeV, the pulse profile was found to show two narrow peaks synchronized with those measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board the Fermi satellite.
Abstract
In this talk we will present our most recent numerical and observational results on the formation, evolution, and X-ray emission from hot bubbles in nebulae around evolved stars. Our studies include hot bubbles around massive and low-mass stars, e.g., Wolf-Rayet nebulae and planetary nebulae. Our results show that the diffuse X-ray emission from these hot bubbles is a dynamic process that involves mixing of nebular material into the hot bubble due to hydrodynamical instabilities, photoevaporation, thermal conduction, and dust cooling. The formation of these hot bubbles is governed by the evolution of the stellar wind parameters, and its properties can be used to study stellar evolution.
Abstract
The origins of neutron(n)-capture elements (atomic number Z > 30) have historically been discerned from the interpretation of stellar spectra. However, in the last decade nebular spectroscopy has been demonstrated to be a potentially powerful new tool to study the nucleosynthesis of n-capture elements. In this talk, I will discuss exciting new advances made in this field with near-infrared and optical observations of planetary nebulae, and atomic data investigations that enable the analysis of spectroscopic data.
« Newer Older »
Próximas charlas
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)