Found 5 talks width keyword molecular data

Oe00LDuJNfs-thumbnail
Tuesday April 18, 2023
University of Oxford

Abstract

 

Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.


PKmxNJtNCxk-thumbnail
Tuesday July 20, 2021
University College of London

Abstract

The ExoMol project (www.exomol.com) provides comprehensive spectroscopic data (line lists) for the study of atmospheres of exoplanets and other hot bodies.  These line lists serve as input for models of radiative transport through hot atmospheres and are useful for a variety of terrestrial applications. The basic form of the database is extensive line lists; these are supplemented with partition functions, state lifetimes, cooling functions, Landé g-factors, temperature-dependent cross sections, opacities, k-coefficients and pressure broadening parameters. Currently containing 80 molecules and 190 isotopologues totaling over 700 billion transitions, the database covers infrared, visible and UV wavelengths. The field of the HR spectroscopy of exoplanets is growing extremely fast and urgently demands molecular data of high precision. Failure to detect molecules in atmospheres of exoplanets is often attributed to the lack of the underlying quality of
the line positions.  These developments have led us to begin a systematic attempt to improve the accuracy of the line positions for the line lists contained in the database. Our new ExoMolHD project aims to provide comprehensive line lists to facilitate their use in characterization of exoplanets using high resolution Doppler shift spectroscopy. Progress on this objective will be presented.


FnyEEu79ulU-thumbnail
Thursday January 29, 2015
Centre de Recherche Astronomique de Lyon

Abstract

Understanding the atmospheric and evolutive properties of very low mass stars, brown dwarfs, and gas giant exoplanets have been important challenges for modelers around the world since the discovery of the first brown dwarfs in the Pleiades cluster (Rebolo et al. 1995) and in the field (Nakajima et al. 1995). The early studies of brown dwarfs have provided rich insights into atmospheric physics, with discoveries ranging from cloud formation (Tsuji et al. 1996), methane bands (Oppenheimer et al. 1995) and ammonia bands (Delorme et al. 2008), to the formation of wasi-molecular KI-H2 absorption (Allard et al. 2007), and to disequilibrium chemistry (Yelle & Griffith 2001). New classical 1D models yield spectral energy distribution (SED) that match relatively well despite these complexities. These models have for instance explained the spectral transition from M to L, T and now Y brown dwarf spectral types (Allard et al. 2013). However, in presence of surface inhomogeneities revealed recently for a nearby (2 pc) brown dwarf (Crossfield et al. 2014), the SED may well fit even exactly, but the model parameters could be far from exact, e.g. with the effective temperature by several hundred kelvins too cool in the case of dusty brown dwarfs and young gas giant exoplanets! I will review the progress achieved in reproducing the spectral properties of very low mass stars, brown dwarfs and gas giant exoplanets, and review progress in modeling more accurately their atmospheres using Radiation HydroDynamical (RHD) simulations.


dOFDS7v4NqA-thumbnail
Thursday December 19, 2013
Instituto Nacional de Astrofisica, Optica y Electronica, Mexico

Abstract

I will present the first Large Millimiter Telescope spectra of 4 nearby galaxies with known high star formation rates. The individual spectra were acquired with the Redshift Search Receiver, a 3 mm spectrograph that covers simultaneously the 3 mm band from 75 to 110 GHz. The spectra show rms temperatures of around 4 mK that allow us to detect not only common molecular species such as CO, HCN, HCO+, HCN, 13CO reported widely in the literature but also other more rare molecular transitions (HC3N, CN, CH3OH, CH3C2H) and even Hydrogen recombination lines (from H39alpha to H42alpha). We are making use of theoretical radiative transfer models to analize these spectra in order to understand the variations of the observed line ratios of different lines in galaxies classified as ultraluminous infrared galaxies where the star formation rate may be as high as 100 solar masses per year. These data will help to understand the physical conditions of the gas in regions that are forming stars very efficiently. The observed line ratios in star forming galaxies are also compared to those galaxies that is known to contain an AGN.


HdbS-tqWMio-thumbnail
Tuesday January 25, 2011
Instituto de Astrofísica de Canarias, Spain

Abstract

In this talk I will present the first complete 12CO J=3-2 map of M81, observed as part of the Nearby Galaxies Legacy Survey. We have detected nine regions of significant CO emission located at different positions within the spiral arms, and confirmed that the global CO emission in the galaxy is low. Using a new Hα map obtained with the Isaac Newton Telescope and archival data I will discuss a series of topics including the correlation between the molecular gas and star forming regions, the CO (3-2)/(1-0) line ratio, and the amount of hydrogen produced in photo-dissociation regions near the locations where CO J=3-2 was detected.


« Newer Older »

Próximas charlas


More upcoming talks

Últimos Coloquios


Últimas charlas