Found 8 talks width keyword stellar oscillations
Abstract
Understanding stellar structure and evolution significantly impacts our understanding of the tight-knit evolution of galaxies and exoplanet systems. However, hidden behind the luminous layers of the stellar atmosphere, the deep interior of a star is eluding from direct measurements. The seismic study of waves propagating the deep interior provides the only way to measure the internal structure, dynamics, and mixing in any given star and compare it to theoretical models.
With the photometric data from space missions, such as the NASA Kepler telescope, a golden age has begun for seismology. In particular, the seismic studies of thousands of solar-like have led to numerous breakthroughs in our understanding of the stellar structure of red-giant stars. Complimentary information on stellar binarity, tidal forces, rotation, and lithium abundance provide additional constraints to characterize the advanced evolution of stars further and provide high-resolution insights into complex internal adjustments. Approaching a sample of ~1000 identified solar-like oscillators in binary systems, provided by the ESA Gaia and NASA TESS missions draws an exciting picture on the interaction of stellar and orbital evolution.
https://rediris.zoom.us/j/89275150368?pwd=QnNxc09KbmJMTmdaRmVGdjZYSlBqdz09
ID de reunión: 892 7515 0368
Código de acceso: 101169
https://youtube.com/live/6Iproe6Zwb4?feature=share
Abstract
Massive stars (at least eight times as massive as the Sun) possess strong stellar winds driven by radiation. With the advent of the so called MiMeS collaboration, an increasing number of these massive stars have been confirmed to have global magnetic fields. Such magnetic fields can have significant influence on the dynamics of these stellar winds which are strongly ionized. Such interaction of the wind and magnetic field can generate copious amount of X-rays, they can spin the star down, they can also help form large scale disk-like structures. In this presentation I will discuss the nature of such radiatively-driven winds and how they interact with magnetic fields.
https://youtu.be/jKmifm17bno
Abstract
(This seminar is organized by the IAU G5 commission on stellar and planetary atmospheres)
Task-based computing is a method where computational problems are split
into a large number of semi-independent tasks (cf.
2018MNRAS.477..624N). The method is a general one, with application not
limited to traditional grid-based simulations; it can be applied with
advantages also to particle-based and hybrid simulations, which involve
both particles and fields. The main advantages emerge when doing
simulations of very complex and / or multi-scale systems, where the
cost of updating is very unevenly distributed in space, with perhaps
large volumes with very low update cost and small but important regions
with large update costs.
Possible applications in the context of stellar atmospheres include
modelling that covers large scales, such as whole active regions on the
Sun or even the entire Sun, while at the same time allows resolving
small-scale details in the photosphere, chromosphere, and corona. In
the context of planetary atmospheres, models of pebble-accreting hot
primordial atmospheres that cover all scales, from the surfaces of
Mars- and Earth-size embryos to the scale heights of the surrounding
protoplanetary disks, have already been computed (2018MNRAS.479.5136P,
2019MNRAS.482L.107P), and one can envision a number of applications
where the task-based computing advantage is leveraged, for example to
selectively do the detailed chemistry necessary to treat atmospheres
saturated with evaporated solids, or to do complex cloud chemistry
combined with 3-D radiative transfer.
In the talk I will give a quick overview of the principles behind
task-based computing, and then use both already published and still
on-going work to illustrate how this may be used in practice. I will
finish by discussing how these methods could be applied with great
advantage to problems such as non-equilibrium ionization, non-LTE
radiative transfer, and partial redistribution diagnostics of spectral
lines.
Abstract
Time-domain space missions have revolutionized our understanding of stellar physics and stellar populations. Virtually all evolved stars can be detected as oscillators in missions such as Kepler, K2, TESS and PLATO. Asteroseismology, or the study of stellar oscillations, can be combined with spectroscopy to infer masses, radii and ages for very large samples of stars. This asteroseismic data can also be used to train machine learning tools to infer ages for even larger stellar population studies, sampling a large fraction of the volume of the Milky Way galaxy. In this talk I demonstrate that asteroseismic radii are in excellent agreement with those inferred using Gaia and spectroscopic data; this demonstrates that the current asteroseismic data is precise and accurate at the 1-2% level. Major new catalogs for Kepler and K2 data are nearing completion, and I present initial results from both. We find unexpected age patterns in stars though to be chemically old, illustrating the power of age information for Galactic archeology. Prospects for future progress in the TESS era will also be discussed.
Abstract
The application of the Fourier transform (FT) technique to high resolution spectra of OB-type stars has challenged our previous knowledge about stellar rotation in stars in the upper region of the HRD. The FT is an old and powerful tool that has being widely used in the case of cool stars, but only very recently applied to massive stars in a systematic way. In this talk I will present the results of the line-broadening characterization of ~250 Galactic OB-type stars (including dwarfs, giants and supergiants with spectral types O4-B9) from the IACOB spectroscopic database. I will show how these analyses have led to a downward revision of previously determined projected rotational velocities in these stars, and have definitely confirmed the presence of a non-negligible extra line-broadening contribution (commonly called macroturbulent broadening) in the whole OB star domain. I will also provide some notes about the importance of these findings on the evolution of massive stars and the detection of stellar oscillations along the lifetime of these important astrophysical objects.
Abstract
I will review what we know about Type I Bursts (thermonuclear explosions on the surface of accreting Neutron Stars) and burst oscillations (fluctuations in the intensity of the burst lightcurves). I will describe the known problems in burst oscillation models and the various solutions that have been proposed. I will report recent progress made in the case of the pulsar IGR J17480-2446 in the Globular Cluster Terzan 5, where we were able to pin point the most likely mechanism responsible for the oscillations. I will explain whether this might be applicable to the other bursters and discuss future perspectives including current efforts to develop magneto-hydrodynamical simulations of the bursting process.
Abstract
The Kepler spacecraft is providing photometric time series with micromagnitude precision for thousands of variable stars. The continuous time-series of unprecedented timespan open up the opportunity to study the pulsational variability in much more detail than was previously possible from the ground. We present a first general characterization of the variability of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate variable A-F type stars, and investigate the relation between gamma Doradus, delta Scuti, and hybrid stars. Our results suggest a revision of the current observational instability strips, and imply an investigation of pulsation mechanisms to drive hybrid pulsations.
Abstract
Gamma Dor stars (M = 1.2-2.5 M⊙; spectral type A-F) are very interesting from an asteroseismic point of view. They show gravity modes, which are the only modes that provide information on the deep stellar interior. Observationally they are very challenging targets. Typical pulsation periods are of the order of a day and amplitudes are fairly small (below 0.05 mag; 2 km/s), making it extremely difficult to monitor the periodic variations from the ground. The asteroseismic space missions CoRoT and Kepler are providing uninterrupted time-series from space, with unprecedented accuracy, and hence promise a revolution in the study of gamma Dor stars. I will present results of the seismic analysis of CoRoT and Kepler gamma Dor targets, and the associated ground-based support observations, involving many telescopes at different observatories (including La Palma and Izaña).« Newer Older »
Próximas charlas
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)