Found 6 talks width keyword AGB and post-AGB
Abstract
Globular clusters (GCs) are fascinating objects nearly as old as the Universe that provide insight on a large variety of astrophysical and cosmological processes. However, their formation and their early and long-term evolution are far from being understood. In particular, the classical paradigm describing GCs as large systems of coeval stars formed out of chemically homogeneous material has been definitively swept away by recent high-precision spectroscopic and deep photometric observations. These data have provided undisputed evidence that GCs host multiple stellar populations, with very peculiar chemical properties. In this talk, I will review the properties of these multiple populations, before presenting the different scenarios that have been proposed to describe their formation. I will focus on the (many) current theoretical issues and open questions.
Abstract
In this talk I will present the our work on an exotic group of evolved objects: post-AGB and post-RGB stars and the excellent constraints they provide for single and binary star evolution and nucleosynthesis. These objects have also revealed new evolutionary channels and AGB nucleosynthesis which is vital for understanding the complex chemical evolution of our Galaxy as well as external galaxies.
Abstract
All the elements from carbon to uranium present in the Solar System were produced by hundreds to thousands of stars belonging to different stellar generations that evolved and died during the presolar evolution of the Galaxy. Using the abundances of radioactive nuclei inferred from meteoritic analysis we can date the last of these stellar additions. We have found that the last contribution of elements such as carbon and slow neutron-capture elements to the Solar System from an asymptotic giant branch star occurred 15-30 Myr before the formation of the Sun. This provides us with an upper limit of the time when the precursor material of the Solar System became isolated from the bulk of the galactic material. Interestingly, it compares well to the lifetime of high-mass molecular clouds suggesting that the Sun was born in a very large family of stars.
Abstract
ExPo is an imaging polarimeter that has been built in Utrecht University. ExPo works in the visible, and it combines the dual-beam technique, together with very short exposure times and a high polarization sensitivity. After four successful campaigns at the William Herschel Telescope, we have obtained polarization images of circumstellar environments around T Tau's and Herbig Ae's stars, evolved (post-AGB) stars and planets like Venus and Saturn. Our results prove the utility of imaging polarimetry to characterize faint structures around very different objects. In this talk I will go through the instrument details, and I will show some of our science results.
Abstract
We revisit the question of the ionization of the diffuse medium in late type galaxies, by studying NGC 891, the prototype of edge-on spiral galaxies. The most important challenge for the models considered so far was the observed increase of [O III]/Hβ, [O II]/Hβ and [N II]/Hα with increasing distance to the galactic plane. We propose a scenario based on the expected population of massive OB stars and hot low-mass evolved stars (HOLMES) in this galaxy to explain this observational fact. In the framework of this scenario we construct a finely meshed grid of photoionization models. For each value of the galactic latitude z we look for the models which simultaneously fit the observed values of the [O III]/Hβ, [O II]/Hβ and [N II]/Hα ratios. For each value of z we find a range of solutions which depends on the value of the oxygen abundance. The models which fit the observations indicate a systematic decrease of the electron density with increasing z. They become dominated by the HOLMES with increasing z only when restricting to solar oxygen abundance models, which argues that the metallicity above the galactic plane should be close to solar. They also indicate that N/O increases with increasing z.Abstract
Asymptotic Giant Branch (AGB) stars are a principal source of gas and dust input into the interstellar medium, being an important driver of chemical evolution in galaxies. Rubidium is a key element to distinguish between high mass (~4-8 M⊙) AGB stars and low mass (~1-4 M⊙) AGBs - high mass AGBs are predicted to produce a lot of rubidium as a consequence of the genuine nucleosynthetic processes (the s-process) that characterise these stars. The Magellanic Clouds (MCs) offer a unique opportunity to study the stellar evolution and nucleosynthesis of AGB stars in low metallicity environments where distances (and so the star's luminosity) are known. We present the discovery of extragalactic rubidium-rich AGB stars in the MCs confirming that the more massive AGB stars are generally brighter than the standard adopted luminosity limit (Mbol~-7.1) for AGB's. In addition, massive MC-AGBs are more enriched in Rb than their galactic counterparts, as it is qualitatively predicted by the present theoretical models; the Rb over-abundance increase with increasing stellar mass and with decreasing metallicity. However, present theoretical models are far from matching the extremely high Rb overabundances observed.« Newer Older »
Próximas charlas
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)