Found 10 talks width keyword solar atmosphere

zlN7_aJghM8-thumbnail
Tuesday May 18, 2021
Niels Bohr Institute, University of Copenhaguen

Abstract

(This seminar is organized by the IAU G5 commission on stellar and planetary atmospheres) 

Task-based computing is a method where computational problems are split
   into a large number of semi-independent tasks (cf.
   2018MNRAS.477..624N). The method is a general one, with application not
   limited to traditional grid-based simulations; it can be applied with
   advantages also to particle-based and hybrid simulations, which involve
   both particles and fields. The main advantages emerge when doing
   simulations of very complex and / or multi-scale systems, where the
   cost of updating is very unevenly distributed in space, with perhaps
   large volumes with very low update cost and small but important regions
   with large update costs.

   Possible applications in the context of stellar atmospheres include
   modelling that covers large scales, such as whole active regions on the
   Sun or even the entire Sun, while at the same time allows resolving
   small-scale details in the photosphere, chromosphere, and corona. In
   the context of planetary atmospheres, models of pebble-accreting hot
   primordial atmospheres that cover all scales, from the surfaces of
   Mars- and Earth-size embryos to the scale heights of the surrounding
   protoplanetary disks, have already been computed (2018MNRAS.479.5136P,
   2019MNRAS.482L.107P), and one can envision a number of applications
   where the task-based computing advantage is leveraged, for example to
   selectively do the detailed chemistry necessary to treat atmospheres
   saturated with evaporated solids, or to do complex cloud chemistry
   combined with 3-D radiative transfer.

   In the talk I will give a quick overview of the principles behind
   task-based computing, and then use both already published and still
   on-going work to illustrate how this may be used in practice. I will
   finish by discussing how these methods could be applied with great
   advantage to problems such as non-equilibrium ionization, non-LTE
   radiative transfer, and partial redistribution diagnostics of spectral
   lines.


OS3GUr1Wx0Q-thumbnail
Tuesday October 15, 2019
Astronomical Institute, Slovak Academy of Sciences

Abstract

Emerging flux regions (EFRs) are seen as magnetic concentrations in the photosphere of the Sun. From a theoretical point of view, the EFRs are formed in the convection zone and then emerge because of magnetic buoyancy (Parker instability) to the solar surface. During the formation process of EFRs, merging and cancellation of different polarities occur, leading to various configurations of the magnetic field. Often, EFRs are visible in the chromosphere in form of magnetic loops loaded with plasma, which are often called “cool loops” when seen in the chromosphere along with dark fibrils and they can reach up to the corona. Nowadays, we refer to them as an arch filament system (AFS) which connects two different polarities.  The AFSs are commonly observed in several chromospheric spectral lines. A suitable spectral line to investigate chromospheric features and particularly AFSs is the He I 10830 Å triplet. The new generation of solar telescopes and instruments such EST and DKIST, will allow us to record very high spectral, spatial, and temporal resolution observations necessary to investigate the dynamics, magnetic field, and characteristics of AFSs. These observations will help us to answer many open questions related to flux emergence such: (1) What are the observational consequences of the emerging flux? (2) How do EFRs evolve with time in the different layers of the solar atmosphere and how are these layers linked? (3) Is it possible to measure the height difference between the photosphere and the chromosphere connected by the legs of the AFSs?


y9_3wARpGJg-thumbnail
Wednesday June 3, 2015
School of Mathematical Sciences de la Monash University (Melbourne, Australia)

Abstract

The Sun is a magnetic star, not as magnetic as some stars, or as it was when it
was younger, but nonetheless magnetic fields dominate and even construct its
atmosphere. There would be no corona without magnetic fields. The surface is
also dappled with small scale magnetic field associated with surface convection
cells, granules and supergranules. But sometimes we also see much larger and
more powerful Active Regions containing sunspots. These are wounds in the
surface of the Sun that allow waves and oscillations in the solar interior and
atmosphere to be coupled much more directly than they usually are. In
particular, they allow the Sun's internal seismology (the p-modes) to drive a
variety of waves through the Active Region atmosphere, and conversely, the
atmospheres to pollute the internal seismology. This makes active region
helioseismology a very challenging field.


T92olnv1flc-thumbnail
Thursday February 19, 2015
IAC

Abstract

The lower solar atmosphere is very weakly ionized, and by conductivity it is comparable to the sea water. The collisional frequency for electrons and ions can be over 10^10 Hz and 10^9 Hz, respectively. This implies that particles may not be magnetized and are thus unaffected by the magnetic field. In this talk I shall present accurate collision cross sections and collision frequencies for electrons, protons and hydrogen atoms, and the corresponding transport coefficients for layers with both unmagnetized and magnetized particles. The cross sections include many essential effects like charge exchange, quantum-mechanical in-distinguishability at low energies, polarization of neutral atoms by external charges, and dependence on energy of colliding particles. The effects of collisions on Alfven waves will also be discussed.


JIeJADkBi08-thumbnail
Thursday February 5, 2015
Main Astronomical Observatory, National Academy of Sciences, Kyiv

Abstract

The solar abundance of chemical elements play an important role in addressing such important issues as the formation, structure, and evolution of the Sun and the solar system, the origin of the chemical elements, the evolution of stars and galaxies. Despite the large number of papers published on this issue, debates about the solar composition of the Sun continue. In this talk we start summarizing the current understanding of the solar abundances of iron and CNO elements, which play a crucial role on the determination of the solar metallicity. We then pay especial attention to the impact of the quiet Sun magnetism on the determination of the abundances of these elements. The solar photosphere is significantly magnetized, due to the ubiquitous presence of a small-scale magnetic field whose mean strength is thought to be of the order of 100 gauss. Here we address the problem of the determination of the abundances of chemical elements taking into account the significant magnetization of the quiet Sun photosphere. To this end, we use 3D models of the quiet solar photosphere resulting from a state-of-the-art magneto-convection simulation with small-scale dynamo action where the net magnetic flux is zero. We conclude that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo,then its impact on the determination of the solar abundance of iron and CNO elements is negligible.


iQQOflYDKlw-thumbnail
Tuesday October 28, 2014
High Altitude Observatory of the National Center for Atmospheric Research

Abstract

The Chromosphere and Prominence Magnetometer (ChroMag) is a synoptic  instrument with the goal of quantifying the intertwined dynamics and  magnetism of the solar chromosphere and in prominences through imaging  spectro-polarimetry of the full solar disk in a synoptic fashion. The  picture of chromospheric magnetism and dynamics is rapidly developing,  and a pressing need exists for breakthrough observations of  chromospheric vector magnetic field measurements at the true lower  boundary of the heliospheric system. ChroMag will provide measurements  that will enable scientists to study and better understand the  energetics of the solar atmosphere, how prominences are formed, how  energy is stored in the magnetic field structure of the atmosphere and  how it is released during space weather events like flares and coronal  mass ejections. An essential part of the ChroMag program is a commitment  to develop and provide community access to the `inversion' tools  necessary to interpret the measurements and derive the  magneto-hydrodynamic parameters of the plasma. Measurements of an  instrument like ChroMag provide critical physical context for the Solar  Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph  (IRIS) as well as ground-based observatories such as the future Daniel  K. Inouye Solar Telescope (DKIST). A prototype is currently deployed in  Boulder, CO, USA. We will present an overview of instrument design and  capabilities, show some recent observations, and discuss the future of  the project.

dn1Wv4fstsA-thumbnail
Thursday October 24, 2013
Stanford-Lockheed Institute for Space Research

Abstract

Flares are among the most energetic magnetic solar phenomena. They are often accompanied by ejections of charged particles, which have a direct influence on the Earth in terms of Aurora or radio and satellite outages. The sudden nature of flares - some of them only last minutes - makes them an elusive feature when observed from ground-based telescopes. These measurements are especially challenging when we focus on magnetic fields and velocities in the different solar layers where flares develop and occur. I will present flare observations taken with different instruments, each targeting different observables, and I will show what we can learn from ground-based polarization measurements.


d2b3yL_TUG0-thumbnail
Tuesday April 16, 2013
National Solar Observatory at Sac Peak

Abstract

Total spectral irradiance is typically modeled by assinging an atmospheric model to each pixel of a full disk image and geometricllay combining the predicted wavelength dependent intensity for each of these models into a disk integrated spectrum. This works reasonably well, as the hydrostatic models that are used in this procedure generally reproduce observed spectra very well. However, for numerical expedience this scheme neglects some important physical aspects of the the solar atmosphere, in particular its three-dimensional and strongly dynamic nature. In this talk I will discuss the importance of some of these effects on the spectral irradiance signal, using forward radiative transfer modeling in realistic three-dimenional simulations. Obviously, modeling the three-dimensional dynamic structure over the whole disk is computaionally prohibitive, but if some of the effects discused above are important, strategies will have to be implemented to incorporate them approximately. Characterizing these cotributions to the spectral irradiance will also help us to better understand the physical nature of the forces that drive variability, and hopefully improve our predictive capabilities. 


C0mjMSQV6X4-thumbnail
Thursday October 4, 2012
IAC

Abstract

The coronal heating problem has been with us for almost 70 years now. Among the different proposed explanations, wave-based heating mechanisms are recurrently invoked. In the last decade, a wealth of high resolution observations have shown that wave-like dynamics is present at almost all layers of the solar atmosphere. As a consequence, a renewed interest has grown on their role in plasma heating mechanisms. We will discuss a series of aspects related to the current status of MHD wave heating of the solar corona. The talk will focus on the following ones: a) recent observational discoveries of waves and their relevance to the heating problem; b) our theoretical understanding on their nature and properties; c) our current level of comprehension of the sequence of physical processes that link oscillations with dissipation and heat conversion; and d) the merits and faults of current theories, including suggestions for the way forward in both theory and observations.


Nqh0m991r1s-thumbnail
Thursday March 22, 2012
IAC

Abstract

Solar magnetism may look deceptively boring (a rather common star with relatively low activity). As it turns out, even the most quiet areas of the Sun (away from the sunspots) harbour a rich and interesting magnetic activity which is extremely complex and dynamic at spatial scales as small as ~100 km. And more importantly, this magnetism permeates most of the Sun, all the time. Therefore, it is not surprising that it might play an important role for solving some longstanding questions of stellar magnetism as: how is the million degree corona maintained when all sunspots have disappeared during the minimum of magnetic activity? And this is of interest not only for solar physics but for stellar astrophysics too, since it is expected that every star with a convective envelope harbours small-scale magnetic activity that we cannot hope to observe with the great detail we observe it in the Sun. From the first evidence of the presence of magnetic fields in the quiet areas of the Sun to the discovery of the smallest organised magnetic structures ever observed in a stellar surface just 30 years have passed. In this seminar, I will give an overview of our present knowledge about the small-scale quiet Sun magnetism. In particular, I will show how small loops of sizes of several hundreds of kilometers appear in the surface and travel across the solar atmosphere, reaching upper layers and having direct implications on chromospheric (coronal) magnetism. I will also show some of the properties of these newly discovered magnetic structures such as their spatial distribution, a key ingredient for understanding their origin.


« Newer Older »

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks