Found 6 talks width keyword Inflation
Abstract
lighter than the canonical axion will be discussed. The implications for dark matter, neutron stars and gravitational waves searches will also be addressed.
Abstract
I will review the status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a project led from the IAC with the aim of characterising the polarisation of the Cosmic Microwave Background (CMB) and other galactic or extragalactic physical processes that emit in microwaves in the frequency range 10-42GHz, and at large angular scales (1 degree resolution). QUIJOTE consists of two telescopes and three instruments operating from the Teide Observatory, and started operations about 10 years ago, in November 2012.
I will discuss the status of the project, and I will present the latest scientific results associated with the wide survey carried out with the first QUIJOTE instrument (MFI) at 11, 13, 17 and 19GHz, covering approximately 29000 deg$^2$ with polarisation sensitivities in the range of 35-40 $\mu$K/deg. These MFI maps provide the most accurate description we have of the polarization of the emission of the Milky Way in the microwave range, in a frequency domain previously unexplored by other experiments. These maps provide a unique view of the Galactic
magnetic field as traced by the synchrotron emission. These results have been presented in an initial series of 6 scientific articles published on January 12th, 2023.
Finally, I will describe the prospects for future CMB observations from the Teide Observatory.
Abstract
Cosmological observations (redshifts, cosmic microwave background radiation, abundance of light elements, formation and evolution of galaxies, large-scale structure) find explanations within the standard Lambda-CDM model, although many times after a number of ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly reverberates in the scientific literature: the higher the precision with which the standard cosmological model tries to fit the data, the greater the number of tensions that arise. Moreover, there are alternative explanations for most of the observations. Therefore, cosmological hypotheses should be very cautiously proposed and even more cautiously received.
There are also sociological and philosophical arguments to support this scepticism. Only the standard model is considered by most professional cosmologists, while the challenges of the most fundamental ideas of modern cosmology are usually neglected. Funding, research positions, prestige, telescope time, publication in top journals, citations, conferences, and other resources are dedicated almost exclusively to standard cosmology. Moreover, religious, philosophical, economic, and political ideologies in a world dominated by anglophone culture also influence the contents of cosmological ideas.
Abstract
The search for the primordial B-modes polarization in the cosmic microwave background (CMB) radiation,
carrying the signature of the primordial gravitational waves from the inflation epoch, motivated a significant
technological progress enabling the next generation of CMB instruments (e.g. CMB-S4, LiteBIRD)
to reach an unprecedented sensitivity. However, such a challenging detection demands a very high control
of the instrumental systematics and CMB foreground emissions.
Among those, the galactic dust polarized emission spectral dependence, not yet fully
characterized, could leave a high level of uncertainty in the cosmological polarization data
producing an ambiguous detection of the CMB B-modes.
Characterizing the dust spectral energy distribution (SED) spatial variations became one of
the most critical issues in the quest for primordial B-modes.
In the work that I will present we have used the release of the Planck satellite HFI data
obtained with the software Sroll2 (Delouis+2019, A&A 629, A38), in order to characterize
and compare the SEDs for polarization and total intensity.
The mean SEDs for dust polarization and total intensity from 353 to 100 GHz are confirmed
to be remarkably close. However, the data show evidence for spatial variations of the
polarization SED. These variations are correlated with variations of dust temperature
measured on total intensity data but the correlation is tight only in the Galactic plane.
At higher latitudes, by considering 90% of useful sky fraction and less, the amplitude of the dust
emission residuals in polarization suggests that an additional contribution, coming from
variations of the polarization angle, becomes dominant. Current models, which extrapolate
the SED spatial variations from total intensity to polarization, would be therefore grossly
simplifying and underestimating the foreground signal to CMB polarization.
Abstract
I will discuss how the acoustic oscillations that propagate in the photon-baryon fluid during the first million years of the Universe provide a robust method for measuring the cosmological distance scale. The distance that the sound can travel can be computed to high precision and creates a signature in the late-time clustering of matter that serves as a standard ruler. Galaxy clustering results from the Sloan Digital Sky Survey reveal this feature, giving a geometric distance to a redshift of 0.3 and an accurate measurement of Omega_matter. I will review our recent work on the theory and practice of the acoustic oscillation method and our latest cosmology results from SDSS-II. I will then present SDSS-III, which will use the acoustic method to produce 1% distance measurements in order to map the curvature and expansion history of the Universe and measure the evolution of dark energy.
Abstract
In this talk I will review the subject of cosmological inflation, a period of early accelerated expansion. I will discuss Friedmann-Robertson-Walker cosmology and the horizon and flatness problems, and introduce inflation as a solution to those problems. I will also discuss the generation of the primordial (scalar and tensor) spectrum of perturbations which provides the seeds for the large scale structure in the Universe. I will review quickly the status of observations in relation to the inflationary parameters, and then the implications for model building.
« Newer Older »
Upcoming talks
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)