Found 8 talks width keyword Galactic abundances
Abstract
Abstract
The field of Galactic archaeology has been very active in recent years, with a major influx of data from the Gaia satellite and large spectroscopic surveys. The major science questions in the field include Galactic structure and dynamics, the accretion history of the Milky Way, chemical tagging, and age-abundance relations. I will give an overview of GALAH as a large spectroscopic survey, and describe how it is complementary to other ongoing and future survey projects. I will also discuss recent science highlights from the GALAH team and compelling questions for future work.
Abstract
One prediction of ΛCDM is the existence of partially phase-mixed substructures from accreted dwarf galaxies in the Milky Way stellar halo. Substructure originating in a single accretion event can be readily identified as a tight cluster of stars in phase space with similar chemical properties. Recently, the discovery of the Gaia Sausage Enceladus (GSE) has revolutionised our understanding of the complex assembly of the Milky Way halo. We present a review of the chemistry that characterises the last major merger that happened to the Milky Way some 9-10 Gy ago.
Abstract
The emission line spectrum of H II regions provides information about the chemical composition of the present-day interstellar medium. The study as a function of their galactocentric distances helps to constrain chemical evolution models. In this talk, I present a reanalysis of the abundance gradients of C, N, O, Ne, S, Cl, and Ar for a sample of 33 Galactic H II regions covering a range in Galactocentric Distances from 6-17 kpc. New values of the Galactocentric distances were calculated using Gaia DR2 parallaxes for some objects. We study in detail the different ICF schemes to improve the results of the total abundances in Galactic H II regions. We found that the re-evaluation of the distances using Gaia DR2 parallaxes produces an O gradient that discards a flattening of the gradient in the inner part of the Galaxy. The radial distribution of Ne/O, S/O, Cl/O and Ar/O are almost flat confirming a lockstep evolution of those elements respect to O. Our Galaxy also shows an almost flat N/O gradient respect to other nearby spiral galaxies. We compare our results with those from B type stars and cepheids, young planetary nebulae and those slopes using optical and infrared data for H II regions.
Abstract
The SDSS Apache Point Observatory Galactic Evolution
Experiment (APOGEE) has
collected high resolution near-IR spectra of several hundred thousand stars
across the Milky Way. I'll describe some observational results about the
spatial variation of chemical abundances as a function of Galactocentric
radius and distance from the midplane, discussing mean abundances,
metallicity
distribution function, and the variation of abundance ratios of multiple
elements. Additional information related to stellar ages can be obtained
from [C/N] for red giant stars. Several lines of evidence suggest that
radial
migration has had a significant impact on the Galactic disk. The
observed patterns of
abundance ratios may provide observational constraints on
nucleosynthetic yields.
Abstract
The most metal-poor stars in the Galaxy are relics from the first generations of star formation, and their properties can reveal key information about the formation and evolution of the Milky Way. However, only a small number of these extremely rare stars are currently known, due to the difficulty in finding them amongst the overwhelmingly more abundant stars of higher metallicity. In this talk, I will present the Pristine survey, a narrow-band photometric survey in the wavelength region around the Ca H&K absorption lines designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, we have covered ~2,500 square degrees of sky in the Northern hemisphere using the CFHT on Mauna Kea in Hawaii, as well as a sizeable spectroscopic follow-up sample using mostly the INT and WHT in La Palma. With this data, we have demonstrated success rates of 70% for finding stars with [Fe/H] < -2.5, and 22% for stars with [Fe/H] < -3.0. This represents a significant improvement upon previous searches for EMP stars, which have reported success rates of 3-4%. With this efficiency, the Pristine survey is poised to make a significant contribution to constraining the metal-poor tail of the metallicity distribution function, as well as increasing the number of known ultra metal-poor (UMP) stars in the literature. In addition, I will discuss how the Pristine survey is being used to characterise the faint dwarf galaxy population, and analyse substructure in the Galactic Halo.
Abstract
I will talk about how resolved stellar populations in the nearby Local Group dwarf galaxies have been used to study the detailed chemical, kinematic and star formation history of these systems and the link to the properties of the Milky Way. I will mainly discuss the results from the DART spectroscopic surveys of nearby dwarf spheroidal galaxies, determining detailed abundances, looking for CEMP stars and also combining spectroscopy with colour-magnitude diagram analysis to measure the time scale for star formation and chemical evolution.
Abstract
In this talk I present an overview of the structure, activity and goals
of the Gaia-ESO survey, a large public spectroscopic survey aimed at investigating
the origin and formation history of our Galaxy by collecting high quality spectroscopy
of representative samples (about 105 Milky Way stars) of all Galactic stellar populations,
in the field and in clusters. Briefly, I discuss the most relevant results obtained so far.
In particular, I present our study on the internal kinematics of Galactic globular clusters based on the radial estimates obtained from the survey complemented with ESO archive data.
« Newer Older »
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)