Found 10 talks width keyword stellar content

ASf-HfO0R4M-thumbnail
Thursday December 18, 2014
Dr. Gustavo Bruzual
Universidad Nacional Autónoma de México (UNAM)

Abstract

Stellar population synthesis has reached a high degree of sophistication that has been exploited to understand to a certain extent the mechanisms of formation, assembling, and evolution of galaxies in our universe. Progress is based on solid results in the field of stellar evolution and spectrophotometric observations of large numbers of stars and galaxies. However, there are certain phases of stellar evolution, like the thermally pulsing asymptotic giant branch (TP-AGB) phase, the Wolf-Rayet stage, and the presence of interacting binaries, whose treatment is either ignored or extremely simplified in galaxy evolution models due to the uncertainties in their description. In this talk I will present results from models that add the state of the art in the treatment of these evolutionary phases to traditional population synthesis models. 


y_Q8CeIs8q8-thumbnail
Wednesday January 29, 2014
Dr. Divakara Mayya
INAOE

Abstract

The nearby spiral galaxy M81 contains a population of 3 kinds of stellar clusters - super star clusters, globular clusters and fuzzy clusters. Over the past few years, we have taken GTC longslit spectra of around 20 of these clusters, with the intention of obtaining their spectroscopic ages. These spectra have allowed us to understand the nature of the brightest globular cluster in this galaxy. In addition, we were able to address the problem of the origin of the fuzzy clusters. In the talk, I will summarize the results we have obtained so far.


k1jn3g7I_d4-thumbnail
Thursday December 12, 2013
Prof. Leticia Carigi
UNAM

Abstract

Based on the double exponential behaviour of the gas mass profile and on the O/H gradient, Robles-Valdez, Carigi & Peimbert (2013) built a sucessful chemical evolution model for M33. The model predicts that in the inner parts of M33 the star formation history follows an inside-out scenario, like M31 or the MW, but in the outer parts of M33 the star formation history follows an outside-in scenario, as dwarf galaxies of the Local Group.


cHjb0hS9aWE-thumbnail
Thursday May 23, 2013
Dr. Adriana De Lorenzo-Cáceres Rodríguez
University of St Andrews

Abstract

The general picture of galaxy formation and evolution includes bars as the main drivers of the internal secular processes affecting the lifetime of disc galaxies. Bars are present in a very high fraction of all the spiral galaxies found at different redshifts, and the processes inducing their formation or the effects they may have on their host galaxies are still under discussion. Particularly interesting is the case of double-barred galaxies: at least 20% of all spirals have turned out to host not only one but two bars embedded in them. These two bars appear randomly oriented and independently rotating. The formation of such a double-barred system has been the goal of several numerical simulations and the results obtained so far can be roughly divided in two big groups: gas-rich and gas-free formation scenarios. In the same way a single bar does, double-bar systems might also promote gas inflow and contribute to the internal secular evolution. Moreover, they have also been proposed as a very efficient mechanism for the feeding of the active galactic nuclei.

All the previous theoretical hypothesis on the formation and evolution of double-barred galaxies have not been tested due to the lack of observational works focused on these systems. With this motivation, during my PhD I observed a sample of double-barred galaxies in order to fully analyse their kinematics and stellar populations. Among the most interesting results, it is important to highlight the discovery of the sigma-hollows, which are the only known kinematical signature of the presence of inner bars, or the fact that inner bars are younger and more metal-rich than their surrounding regions. In this talk I will present the whole work and discuss the results in the framework of the different formation scenarios and the role that these inner bars may be playing in the evolution of their host galaxies.


gAx7Om4GYpU-thumbnail
Thursday January 31, 2013
Dr. Santi Cassisi
INAF - Osservatorio Astronomico di Teramo

Abstract

In recent years accurate photometric and spectroscopic observations have
provided sound evidence that Galactic Globular Clusters can not be longer
considered the prototype of Simple Stellar Populations. In this talk we
present the most recent updates concerning the empirical evidence and
discuss the theoretical framework required for interpreting observations.
Current shortcomings in the interpretation of how the multiple stellar
populations formed in a given cluster are also discussed.


194BRm6Krho-thumbnail
Thursday November 8, 2012
Prof. Piet van der Kruit
University Groningen

Abstract

Disks in spiral galaxies consist of stars and gas. The stellar disks show radially an exponential surface brightness distribution (and vertically one resembling an isothermal sheet), with relatively sharp truncations at of order 4 scalelengths. These truncations are most easily seen in edge-on galaxies. The evidence for these truncations and their statistics will be reviewed. Truncations appear to be not only truncations in the distribution of stars, but also in the total density. The origin of these truncations seem related to the maximum specific angular momentum in the material that formed the disks. Disks are extremely flat. The HI-gas often extends beyond the eructations in the stellar disks, but when they do they also show a warp. Again edge-on galaxies show this mostly readily. Analysis shows that the warps start abruptly, just beyond the truncation radius and some other properties also show abrupt changes at the radius of the onset of the warp. This suggests that warps are the result of infall of gas at later times, when the formation of the stellar disks has been completed. The open issue is still that we have not conclusively shown that we can discover the face-on analogs of the truncations we see in edge-on disk. I will outline some recent research I have been involved in and some ideas for further work and collaborations.


LBVQ_DbW2T8-thumbnail
Thursday October 18, 2012
Dr. Miguel Cerviño
IAA

Abstract

The basis of stellar population modeling was established around 40 years ago somehow
optimized to the technical facilities and observational data available at that epoch. Since then,
it has been used extensively in astronomy and there has been great improvements relating
their associated ingredients in concordance with the development of more powerful computational
and observational facilities.
However, there has been no similar improvements in the understanding about what is
actually modeling neither in improve the modeling itself to include the current technical advances
to obtain more accurate result in the physical inferences obtained from them.
In this talk I present some advances in the subject of stellar
population modeling and how to take advantage of current facilities to obtain more robust
and accurate inferences from stellar systems at different scales
covering the continuum between fully resolved populations to fully unresolved ones in a unified framework.


WsZ6pYyAx4Y-thumbnail
Tuesday September 27, 2011
Dr. Ignacio Trujillo
Instituto de Astrofísica de Canarias, Spain

Abstract

In the last few years there has been cumulative evidence showing that massive galaxies have dramatically grown in size since z~3. This result has remained very controversial as it seems at odd with our previous knowledge based on the detailed analysis of the stellar populations of nearby massive spheroids which shows that their stars were form very early on and over a short time interval. In addition to this, there is growing observational support for a significant evolution of the morphologies of these galaxies with cosmic time. In this talk, I will summarize what we have learned since the discovery of the strong evolution of the morphological properties of the massive galaxies, the mechanisms proposed to explain their origin and size increase, and the pending questions still to solve.


Nr84Z1niEyo-thumbnail
Friday June 17, 2011
Dr. Mauro D'Onofrio
University of Padova, Italy

Abstract

We present the K band FP of the ETGs members of the clusters observed by the WINGS survey. The data confirm a different tilt of the FP with respect to the V solution and the presence of a substantial tilt in the K band. This led us to further investigate the hypothesis that ETG non-homology greatly contribute to the tilt of the FP.

The WINGS data show that there are now several evidence of both structural and dynamical non-homology for the class of ETGs. Among these we will discuss in detail the tight relation between the mass of the ETGs, their stellar mass-to-light ratio M/L, and the Sersic index n describing the shape of their light profiles. We guess through a series of mock simulations that this relation acts as a fine-tuning that keeps small the scatter around the FP. We therefore conclude that ETG non-homology is closely connected either with the problem of the tilt and with the small scatter around the FP.


T7CYEy8JwKw-thumbnail
Tuesday June 7, 2011
Dr. Sharon Meidt
MPIA, Germany

Abstract

With imaging at 3.6 and 4.5 microns where the light in nearby galaxies is dominated by old stars, the Spitzer Survey of Nearby Galaxies (S4G) stands poised for an optimal view of stellar mass and structure in the local Universe.  I will describe an effort to construct accurate 2D stellar mass maps from S4G images, starting with a correction for non-stellar (e.g. PAH and hot dust) contaminant emission using only the two S4G images as inputs; contaminant emission is isolated from the old stellar light using an Independent Component Analysis (ICA) technique designed to separate statistically independent source distributions.  An inventory of recovered contaminants is established via comparison to the non-stellar emission in archival 8 micron images.  Once these contaminants are removed, maps of the underlying distribution of old stars are revealed that retain a high degree of structural information and exhibit [3.6]-[4.5] colors consistent with those of K and M giants.  Contaminant-free S4G maps constructed with this approach should be ideally suited for tracing the stellar mass in galaxies spanning a range of morphological properties, dust contents and star formation histories.


« Newer Older »

Upcoming talks


More upcoming talks

Featured talks