Found 13 talks width keyword binaries

xgyTp50yuHM-thumbnail
Tuesday March 25, 2014
Institute for Astronomy- KU Leuven

Abstract

The theory of stellar evolution is well developed over the past decades, and in particular the predictions of one dimensional numerical models have passed basic observational tests. With the advent of high precision astronomical observations, these tests can now be improved to fine tune the physics of the models. In particular, the combination of exploiting binary properties with the information obtained from asteroseismology, proves to provide a promising test framework. However, both binarity and seismology increase the complexity of the observational models and their relation to the stellar evolutionary model, and therefore require as many independent tests as possible.


-thumbnail
Thursday March 1, 2012
Space Telescope Science Institute, Baltimore

Abstract

Although they are rare and short-lived, massive stars play a major role in Universe. With their large luminosities, strong stellar winds and spectacular explosions they act as cosmic engines, heating and enriching their surroundings, where the next generation of stars are forming. 
The latest stellar evolutionary models show that rotation can have drastic effects, which has been suggested as a evolutionary path for the progenitors of long gamma-ray bursts. I will discuss the recent efforts of theorists and observers to understand the effects of rotation including some highlights of the ongoing "VLT-FLAMES Tarantula Survey of Massive Stars". A further challenge arises from the preference of massive stars to come in close pairs. Interaction with a companion leads to spectacular phenomena such as runaways, X-ray binaries and stellar mergers. I will present new results on the true close binary fraction for massive stars, which imply that only a minority evolve undisturbed towards their death.

VC9Ff7SMe0U-thumbnail
Friday March 25, 2011
University of Central Lancashire, UK

Abstract

Spectroscopic analysis of stellar populations is widely used to understand the history of many systems including globular clusters, nuclear star clusters, dwarf galaxies through to giant galaxies over a wide range of redshifts. In this talk I first explore aspects of stellar population fitting, focussing on the effects of interacting binary stars on the yields and hence the spectra of early-type galaxies. The second part of the talk concentrates on what we know about supernovae type Ia and the importance of understanding their contributions to the chemical evolution of galaxies and stellar populations.


<< First 1 | 2 Older »