Found 24 talks width keyword active galaxies

Thursday November 22, 2012
Dr. Andrés Asensio Ramos


As astrophysicists, we are used to extracting physical information from the observations. The usual procedure is to propose a parametric physical model to explain the observations and use the observations to infer the values of the parameters. However, in our noisy and ambiguous universe, the solution to the inference problem is usually non-unique or diffuse. For this reason, it is important that our inversion techniques give reliable results. In this talk I present a few recent results (dusty tori of AGN, magnetic fields in central stars of planetary nebulae, oscillations of coronal loops, signal detection) in which our group is applying Bayesian ideas to extract information from the observations.

Thursday May 10, 2012
Dr. Rachel Mason
Gemini Observatory


Low-luminosity AGN (LLAGN; LINERs and low-luminosity Seyferts) are present in numerous nearby galaxies and are often suggested to be the "missing link" between bright AGN and "normal", quiescent systems. Their accretion physics appear to differ from those of higher-luminosity AGN, and their place in the AGN unified scheme is not yet clear. Mid-IR observations promise new constraints on the accretion mechanisms and obscuring medium in LLAGN. However, their mid-IR emission remains almost completely unexplored at the high angular resolution needed to separate the weak nucleus from the host galaxy. I will show the results of an exploratory imaging study of ~20 LLAGN using Michelle and T-ReCS on the Gemini telescopes. Combined with Spitzer spectroscopy and high-resolution multi-wavelength information, the data establish, for the first time, the general nuclear IR properties of these objects. There are some hints that the obscuring torus disappears at low AGN luminosities, and we are also able to provide "dust-free" candidates for detailed study of the disk and jets.

Thursday April 26, 2012
Prof. Luis C. Ho
The Observatories of the Carnegie Institution for Science, USA


Supermassive black holes are ubiquitous in galaxies and play a fundamental role in their life cycle. I will review observational progress in defining and refining the various empirical scaling relations between black hole masses and host galaxy properties. I will emphasize ways in which the intrinsic scatter of the scaling relations can be quantified, and present evidence that the scatter correlates with physical properties. I will describe how the scaling relations can be extended to active galaxies and summarize preliminary efforts to probe the evolution of these scaling relations with redshift. I will present new measurements of the cold ISM content in AGN host galaxies and constraints they place on currently popular models of AGN feedback. Lastly, I will discuss a new class of low-mass black holes in bulgeless and dwarf galaxies that serve as local analogs of seed supermassive black holes.

Tuesday February 28, 2012
Dr. Almudena Alonso Herrero
Instituto de Astrofísica de Cantabria, Spain


Luminous Infrared Galaxies (LIR=10^11-10^12Lsun) have star formation rates in the range of ~20-200Msun/yr. In the local Universe ~50% LIRGs show AGN or AGN/SB composite nuclear activity from optical spectroscopy. We decompose Spitzer/IRS 5-35micron spectra of a complete sample of 50 local (d<75Mpc) LIRGs using SB and AGN clumpy torus model templates. We derive a mid-IR AGN detection rate in our sample of local LIRGs of 50%. We also compare the continuum mid-IR AGN detection with other indicators in the mid-IR, optical and X-rays. We estimate for the first time the AGN bolometric contribution to the IR luminosity of the galaxies in local LIRGs. We find that one-third of local LIRGs have LAGN(bol)/LIR>0.05, with only ~10% having a significant contribution LAGN(bol)/LIR>0.25. This is in line with results of Nardini et al. (2010) that only at LIR>3x10^12Lsun the AGN starts dominating bolometrically the IR luminosity in the majority of the systems.

Tuesday October 4, 2011
Dr. Ivan Agudo
Instituto Astrofisica de Andalucia, Spain


Relativistic jets in AGN in general, and in blazars in particular, are the most energetic and among the most powerful astrophysical objects known so far. Their relativistic nature provides them the ability to emit profusely in all spectral ranges from radio wavelengths to gamma-rays, as well as abrupt variability in all time scales (from hours to years). Since the birth of gamma-ray astronomy, locating the origin of gamma-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Deep and densely time sampled monitoring programs with the Fermi Gamma-ray Space Telescope and several other facilities at most of the available spectral ranges (including polarization measurements where possible) are starting to shed light for the case of blazars. After a short review of the status of the problem, some of the latest results locating the GeV emission in the jets of some blazars, at >10 parsec from the central AGN engine, will be presented together with their implications about the gamma-ray emission mechanisms involved

Tuesday May 3, 2011
Miss Josefa Becerra
Instituto de Astrofísica de Canarias, Spain


The MAGIC telescopes discovered very high energy (VHE, E>100 GeV) gamma-ray emission coming from the distant Flat Spectrum Radio Quasar (FSRQ) PKS 1222+21 (4C +21.35, z=0.432). It is the second most distant VHE gamma-ray source, with well measured redshift, detected until now. The detection coincides with high energy MeV/GeV gamma-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light, can be described by a single power law with photon index 2.72 ± 0.34 between 3 GeV and 400 GeV, consistent with gamma-ray emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the gamma-ray emission region to lie outside the Broad Line Region, which would otherwise absorb the VHE gamma-rays. On the other hand, the MAGIC measurement of a doubling time of about 9 minutes indicates an extremely compact emission region, in conflict with the "far dissipation" scenario. This result challenges jet emission models in FSRQs and indicates the importance of jet sub-structures.

Tuesday April 26, 2011
Dr. Cristina Ramos Almeida
University of Sheffield, UK


I will present new mid-infrared imaging data for a sample of ~20 nearby Seyfert galaxies obtained with T-ReCS and MICHELLE on the Gemini Telescopes at subarcsecond resolution. Our aim is to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared nuclear spectral energy distributions (SEDs). These dusty tori have physical sizes smaller than 10 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Seyfert 2 tori have larger covering factors and smaller escape probabilities than those of Seyfert 1. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.

Friday October 29, 2010
Mr. Hugo Messias
Centro de Astronomia e Astrofísica da Universidade de Lisboa, Portugal


In this talk, I will cover our contribution to the study of extremely red galaxy (ERG) populations presenting a multi-wavelength analysis of these objects, selected in the GOODS-South/Chandra Deep Field South field. By using all the photometric (from X-rays to radio) and spectroscopic information available on large deep samples of extremely red objects (EROs, 645 sources), infrared EROs (IEROs, 294 sources) and distant red galaxies (DRGs, 350 sources), we derive redshift distributions, identify AGN powered and star-formation powered galaxies (based on X-ray properties and a new IR AGN diagnostic developed by us), and, using the radio observations of this field, estimate robust (AGN- and dust-unbiased) star formation rate densities (SFRD) for these populations. Applying a redshift separation (1 ≤ z < 2 and 2 ≤ z ≤ 3) we find a significant rise (a factor of 1.5 — 3) of SFRD for EROs and DRGs toward high-z, while none is observed for IEROs. As expected, we find a significant overlap between the ERG populations, and investigate the properties of "pure" (galaxies that conform to only one of the three considered ERG criteria) and "combined" (galaxies conforming to all three criteria) sub-populations. We find ERG sub-populations with no AGN activity and intense star-formation rates. With average values of ~180 M⊙/yr at 2 ≤ z < 3, they reasonably contribute to the global star-formation rate density, reaching a > 20% level. Strong AGN behaviour is not observed in the ERG population, with AGN only increasing the average radio luminosity of ERGs by 10 — 20%. However, AGN are frequently found (in up to 27% of the ERG population), and would increase the SFRD estimate by over 100%. Thus, and while the contribution of SF processes to the radio luminosity in galaxies with AGN remains uncertain, a comprehensive identification of AGN in these populations is necessary to obtain meaningful results. The dust content to each population is also derived by correlating UV and Radio SFRs, giving a higher obscuration for more active SF sources. Also, know to be amongst the most massive galaxies in the high-z universe, I will show that ERGs may constitute up to 60% of the total mass in the universe at 1 ≤ z ≤ 3. Finally, preliminary and promising results are presented on the morphologies of ERGs (CAS and Gini/M20 parameters) based on the v1.9 ACS GOODS-S images.

Thursday March 11, 2010
Dr. Almudena Prieto
Instituto de Astrofísica de Canarias, Spain


Spectral energy distributions (SEDs) of the central few tens of parsec region of some of the nearest active galactic nuclei (AGN) are presented. Peering into the nucleus at these scales, it is found that the intrinsic shape of the spectral energy distribution of an AGN and inferred bolometric luminosity largely depart from those currently on use, mostly extracted from low resolution data. The shape of the SED is different and the AGN luminosities can be overestimated by up to two orders of magnitude if relying on IR satellite data.
Although the shape of these SEDs are currently limited by the availability of high angular resolution data beyond ~20 μ, a prediction from this work is that a major contribution from cold dust below 100 K to these cores is not expected. Over the nine orders of magnitude in frequency covered by these SEDs, the power stored in the IR bump is by far the most energetic fraction of the total energy budget in these cores, accounting for more than 70% of the total.

Monday March 1, 2010
Dr. Masa Imanishi
National Astronomical Observatory of Japan


We present the results of our systematic search for optically elusive, but intrinsically luminous buried AGNs in >100 nearby (z < 0.3) luminous infrared galaxies with L(IR) > 1011 L⊙, classified optically as non-Seyferts. To disentangle AGNs and stars, we have performed (1) infrared 2.5-35 μ low-resolution (R ~ 100) spectroscopy using Subaru, AKARI, and Spitzer, to estimate the strengths of PAH (polycyclic aromatic hydrocarbon) emission and dust absorption features, (2) high-spatial-resolution infrared 20 micron imaging observations using Subaru and Gemini, to constrain the emission surface brightnesses of energy sources, and (3) millimeter interferometric measurements of molecular gas flux ratios, which reflect the physical and chemical effects from AGNs and stars. Overall, all methods provided consistent pictures. We found that the energetic importance of buried AGNs is relatively higher in galaxies with higher infrared luminosities (where more stars will be formed), suggesting that AGN-starburst connections are luminosity dependent. Our results might be related to the AGN feedback scenario as the possible origin of the galaxy down-sizing phenomenon.

<< First 1 | 2 | 3 Last >>

Upcoming talks

Featured talks