Found 25 talks width keyword active galaxies

Video
Monday March 1, 2010
Dr. Masa Imanishi
National Astronomical Observatory of Japan

Abstract

We present the results of our systematic search for optically elusive, but intrinsically luminous buried AGNs in >100 nearby (z < 0.3) luminous infrared galaxies with L(IR) > 1011 L⊙, classified optically as non-Seyferts. To disentangle AGNs and stars, we have performed (1) infrared 2.5-35 μ low-resolution (R ~ 100) spectroscopy using Subaru, AKARI, and Spitzer, to estimate the strengths of PAH (polycyclic aromatic hydrocarbon) emission and dust absorption features, (2) high-spatial-resolution infrared 20 micron imaging observations using Subaru and Gemini, to constrain the emission surface brightnesses of energy sources, and (3) millimeter interferometric measurements of molecular gas flux ratios, which reflect the physical and chemical effects from AGNs and stars. Overall, all methods provided consistent pictures. We found that the energetic importance of buried AGNs is relatively higher in galaxies with higher infrared luminosities (where more stars will be formed), suggesting that AGN-starburst connections are luminosity dependent. Our results might be related to the AGN feedback scenario as the possible origin of the galaxy down-sizing phenomenon.

Video
Monday February 8, 2010
Dr. Roberto Cid Fernandes
Universidade Federal de Santa Catarina, Florianopolis, Brazil

Abstract

This talk is divided into two related parts. First, we will call your attention to a basic, but often overlooked worrying fact, and presents ways of dealing with it. The fact is: an enormous number of galaxies in surveys like the SDSS have emission lines which are too weak (low S/N) to be classified by usual schemes (ie, diagnostic diagrams). It turns out that most of these are AGN-like, so ignoring them on the basis of low S/N (which most people do) leaves as much as 2/3 of these emission line galaxies unaccounted for. The solution: We present a number of alternative methods to rescue this numerous population from the classification limbo. We find that about 1/3 of these weak-line galaxies are massive, metal rich star-forming systems, while the remaining 2/3 are more like LINERs. In the second part, we revisit the old idea by Binette et al (1994) that post-AGB stars can account for the emission line properties of some galaxies. A "retired galaxy" model is presented and compared to data in the SDSS. We find that about 1/4 of the galaxies classified as LINERs in the SDSS are consistent with this model, where all ionizing radiation is of stellar origin. More dramatically, nearly 100% of weak-line LINERs are perfectly consistent with being just retired galaxies, with no active nucleus. If these ideas are correct, contrary to current practice, relatively few LINERs should be counted as bona fide AGN.

Video
Thursday November 5, 2009
Prof. Rony Keppens
Centre for Plasma-Astrophysics, K. U. Leuven, Belgium

Abstract

I will present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appearance in radio maps distinguishes two types of jet morphologies. We investigate how density changes in the external medium can induce one-sided jet decelerations, explaining the existence of hybrid morphology radio sources. Our simulations explore under which conditions highly energetic FR II jets may suddenly decelerate and continue with FR I characteristics. In a related investigation, we explore the role of dynamically important, organized magnetic fields in the collimation of the relativistic jet flows. In that study, we concentrate on morphological features of the bow shock and the jet beam, for various jet Lorentz factors and magnetic field helicities. We show that the helicity of the magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. For the high speed jets considered, significant jet deceleration only occurs beyond distances exceeding hundred jet radii, as the axial flow can reaccelerate downstream to internal cross-shocks. This reacceleration is magnetically aided, due to field compression across the internal shocks which pinch the flow.

Video
Thursday July 16, 2009
Prof. David Koo
University of California Observatories, Lick Observatory, USA

Abstract

AEGIS (All-wavelength Extended Groth strip International Survey: aegis.ucolick.org) is on-going survey that opens up new views of the development of galaxies and AGN's at redshifts z about 1. AEGIS is panchromatic like GOODS, with coverage ranging from X-ray to radio, and nearly as deep but more panoramic by covering a 4x larger region. Its backbone is the most Northern (accessible to the GTC) of the four fields of the DEEP2 Keck spectroscopic survey, which provides not only precision redshifts that yield reliable pairs, groups, and environments, but also internal kinematics and chemical abundances. After an overview of the DEEP and AEGIS surveys, I will share some recent highlights, including using a new kinematic measure for distant galaxies to track Tully-Fisher-like evolution; discovering metal poor, massive, luminous galaxies; finding ubiquitous galactic gas outflows among distant star forming galaxies; and exploring the nature of distant x-ray AGNs.

Video
Thursday October 9, 2008
Dr. Juan Antonio Fernández Ontiveros
Instituto de Astrofísica de Canarias, Spain

Abstract

Starbursts and AGNs are frequently coupled in the central kiloparsecs of Seyfert galaxies, where molecular gas plays a critical role in fueling nuclear starburst activity and feeding the central black hole. Unveiling the dusty nuclear regions with high-spatial resolution techniques in the near-infrared (NIR) permits us to disentangle the AGN and the stellar clusters, characterizing both sources separately. In this context, a small sample of nearby galaxies have been observed with VLT/NaCo adaptive optics in the NIR. These observations were completed with similar high-spatial resolution data in the mid-infrared (VLT/VISIR), optical (HST) and radio wavelengths (VLA). A new alignment for the starburst galaxy NGC 253 was found based on NIR and radio data, due to the high-spatial resolution in both spectral regions, finding NIR counterparts for 8 known radio sources. It is remarkable the lack of any optical or IR counterpart for the radio core, proposed as a low luminosity AGN, which presents an IR-to-radio emission ratio similar (or even lower) than Sgr. A*. Using the high-spatial resolution aligned dataset from optical-IR to radio wavelengths we derived a representative spectral energy distribution (SED) based on 37 young dust embedded clusters resolved in the inner 0.4 kpc. The template is characterized by a maximum at 20 μ and a gentle bump in the 1-2 μ range. These features, absent in lower spatial resolution templates, can be well reproduced by considering an important contribution of very young stellar objects to the IR, and are thus associated with hot dust surrounding the protostars. The average SED was then compared with the nuclear star forming regions found in the Seyfert 2/starburst galaxy NGC 7582.

<< First 1 | 2 | 3 Older »

Upcoming talks

Featured talks