Found 32 talks width keyword galactic structure

nBbFGfhVS10-thumbnail
Friday May 26, 2023
Universidad Nacional Autonoma de Mexico

Abstract

We present the extended data release of the Calar Alto Legacy Integral Field Area (CALIFA) survey (eDR). It comprises science-grade quality data for 895 galaxies obtained with the PMAS/PPak instrument at the 3.5 m telescope at the Calar Alto Observatory along the last 12 years, using the V500 setup (3700-7500Å, 6Å/FWHM) and the CALIFA observing strategy. It includes galaxies of any morphological type, star-formation stage, a wide range of stellar masses ( ∼10^7-10^12 Msun), at an average redshift of  ∼0.015 (90\% within 0.005 < z <0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneously re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides an (almost) seeing-limited spatial resolution (FWHM PSF  ∼1.0").  Furthermore we present the analysis performed using the pyPipe3D pipeline for these dataset. We include a description of (i) the analysis performed by the pipeline, (ii) the adopted datamodel for the derived spatially resolved properties and (iii) the catalog of integrated, characteristics and slope of the radial gradients for a set of observational and physical parameters derived for each galaxy. All these data has been distributed through the following webpage: http://ifs.astroscu.unam.mx/CALIFA_WEB/public_html/


Oe00LDuJNfs-thumbnail
Tuesday April 18, 2023
University of Oxford

Abstract

 

Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.


6JhTtNaFJgA-thumbnail
Tuesday March 7, 2023
Kapteyn Institute at the University of Groningen

Abstract

Only recently, thanks to the Gaia, have we been able to directly measure how our own Galaxy was formed since its infancy, by cannibalizing smaller galaxies formed at the core of dark matter subhalos. These accretion events can be seen as kinematic groups and may have brought their own group of globular clusters, some of which are only seen today as their remnant cold stellar streams. Here I will discuss how the main accretion events unveiled by Gaia can be linked to previously known halo substructures, mainly large stellar clouds identified more than a decade ago in large photometric surveys. Additionally I will discuss the Jhelum stellar stream in the light of its interaction with the Sagittarius stream, which can give us insight on the details of this ongoing accretion event. Finally, I will briefly discuss how the new Gaia XP DR3 spectra is aiding in  the identification of metal-poor unmixed halo substructures in the solar neighbourhood, highlighting the case of ED-2, a [Fe/H] = -2.5 cold stellar stream in which the Sun is embedded in. 

Finally, I will briefly discuss how the new Gaia XP DR3 spectra is aiding in  the identification of metal-poor unmixed halo substructures in the solar neighbourhood, highlighting the case of ED-2, a [Fe/H] = -2.5 cold stellar stream  in which the Sun is embedded in.

qY08kujWVY0-thumbnail
Thursday March 2, 2023
UNAM

Abstract

 

Early-type galaxies: instructions to build them through mergers
Massive early-type galaxies (ETGs) are "red and dead" systems mainly composed of old and metal-rich stellar populations. In a cosmological context, present-day ETGs are believed to be the remnants of a complex stellar mass assembly history marked by several mergers, which are the consequence of the underlying hierarchical assembly of their host dark matter halos. In this talk, I will deal mainly with the merger-driven evolution of ETGs. Firstly, I will illustrate a comparison between observed ETGs from the MaNGA survey and simulated galaxies from the IllustrisTNG cosmological simulation suite. The aim of this study is to provide an interpretative scenario of the stellar mass assembly history of observed present-day ETGs, comparing the radial distributions of their stellar properties with those of simulated galaxies, in which it is possible to disentangle the contribution of stars formed in situ (i.e. within the main progenitor galaxy) and stars formed ex situ (i.e. in other galaxies) and then accreted through mergers. Then, I will describe how the scaling relation between the stellar mass and stellar velocity dispersion in ETGs evolves across cosmic time. Specifically, by extending the results of Cannnarozzo, Sonnenfeld & Nipoti (2020), I model the aforementioned relation through a Bayesian hierarchical approach, considering ETGs with log(M∗/M⊙) > 9 over the redshift range 0 ≲ z ≲ 4. Together with a new characterisation of the relation, I reconstruct the back-in-time evolutionary pathways of individual ETGs on the stellar mass-velocity dispersion plane to answer the question “how did high-redshift ETGs assemble through cosmic time to reach the functional form of the relation in the present-day Universe?“.
After the main topic, if time permits, I would like to spend a few minutes presenting another extra content (below you can find the title and a brief abstract of this further content). Feel free to include it or not in the announcement mail.
EXTRA - Inferring the Dark Matter halo mass in galaxies from other observables with Machine Learning
In the context of the galaxy-halo connection, it is widely known that the Dark Matter (DM) halos show correlations with some physical properties of the hosted galaxy: the most well-known relation is the so-called Stellar-to-Halo-Mass Relation. However, we know that there are several other empirical relations among galaxy properties, involving, for example, the stellar mass, the gas and stellar metallicities, the black hole mass, etc. Given the complexity of the problem and the high number of galaxy properties that might be related to DM halos, the study of the galaxy-halo connection can be approached by relying on machine learning techniques to shed light on this intricate network of relations. With the aim of inferring the DM halo mass and then finding a unique functional form able to link the halo mass to other observables in real galaxies, I rely on the state-of-the-art Explainable Boosting Machine, a novel implementation of generalised additive models with pairwise interactions, training a model on the IllustrisTNG simulation suite at different redshift.

 

 

 

Youtube933518


B1zMqEYV0GQ-thumbnail
Thursday February 23, 2023
University of Padova

Abstract

I present a detailed analysis of the scaling relations of ETGs and suggest a way to predict the evolution of the distributions of galaxies in these planes. This new approach is able to account of several features observed in the FP projections and of the tilt of the Fundamental Plane.

 


VXobGB8tYq4-thumbnail
Thursday January 26, 2023
IAA-CSIC

Abstract

Within the hierarchical framework for galaxy formation, merging and
tidal interactions are expected to shape large galaxies up to the
present day. While major mergers are quite rare at present, minor
mergers and satellite disruptions - that result in stellar streams -
should be common, and are indeed seen in the stellar halos of the Milky
Way and the Andromeda galaxy. In the last years, the Stellar Stream
Legacy Survey (PI. Martinez-Delgado) has exploited available deep
imaging of some nearby spiral galaxies with the ultimate aim of
estimating the frequency, morphology and stellar luminosity/mass
distribution of these structures in the local Universe. In this talk, I
will present the first results of our systematic survey of stellar
streams together with some recent follow-up observations (e.g. Megara,
Subaru) and N-body modelling of the most striking streams. Finally,
I will discuss what we can learn about galaxy formation from the results
of this survey, including the comparison with the available L-CDM
cosmological simulations, and our plans to extend this stream survey
at lower surface brightness regime with the recently approved ARRAKHIS,
the first ESA fast-mission lead by Spain.





FiYR4orgFyE-thumbnail
Tuesday October 4, 2022
National Centre for Nuclear Research, Warsaw, Poland

Abstract

Vimos Public Extragalactic Redshift Survey (VIPERS) is a spectroscopic survey designed to  investigate the spatial distribution of ~90k galaxies on redshift 0.4<z<1.2. The catalogue of spectroscopic observations, combined with auxiliary photometric data, is perfect for evolutionary studies of different types of galaxies. But also for tracing rare objects. One of them are the so-called “red nuggets”, progenitors of the most massive galaxies in the local Universe.  The discovery of red nuggets - highly massive, passive and extremely compact galaxies  -  at high redshift challenged the leading cosmological models, as they do not fit into the evolutionary paths of passive galaxies. Taking into account  that  the galaxies' mergers are stochastic events, it is possible that some red nuggets  remain relatively unaltered for billions of years. Those survivors constitute a group of unique galaxies in the local Universe,  commonly named “relics”. Despite numerous studies dedicated to red nuggets and relics, the link between the population of compact, massive, passive galaxies in the early Universe and their remnants in the local Universe, is still poorly understood.

In my talk I  will present the first spectroscopically selected catalogue of red nuggets at the intermediate redshift.  It is the most extensive catalogue of this kind of galaxies above redshift z > 0.5.  Selected under the most strict criteria, the group of 77 objects consists of a statistically important sample, which allows for analysis of physical properties of those rare passive giants. I will discuss the influence of compactness criteria on the sample size. Moreover I will present  VIPERS red nuggets number densities and discuss the environmental preferences of those exceptional galaxies.


KsMWLj9jEbw-thumbnail
Tuesday May 24, 2022
Weizmann Institute

Abstract

Gravitational dynamical friction affecting the orbits of globular clusters (GCs) was studied extensively as a possible formation mechanism for nuclear star clusters in galaxies. In well-known examples that showcase this phenomenon, like the Milky Way and M31 galaxies, the medium which affects the dynamical friction is dominated by bulge stars. In comparison, the case for dynamical friction in dark matter-dominated systems is much less clear. A puzzling example is the Fornax dwarf galaxy, where the observed positions of GCs have long been suspected to pose a challenge for dark matter, dynamical friction theory, or both. We search for additional systems that are dark matter-dominated and contain a rich population of GCs, offering a test of the mechanism. A possible example is the ultra diffuse galaxy NGC5846-UDG1: we show that GC photometry in this galaxy provide evidence for the imprint of dynamical friction, visible via mass segregation. If confirmed by future analyses of more GC-rich UDG systems, these observations could provide a novel perspective on the nature of dark matter.


HS5XCzpEPCc-thumbnail
Thursday November 25, 2021
Lund Observatory

Abstract

The formation and evolution of galaxies across cosmic time proceeds in different phases, paced by their internal evolution and external factors like gas accretion and mergers. The complex and always changing interplay between these mechanisms drives the assembly of galaxies and the physical conditions for star formation, which leaves observable imprints on the stellar populations. Large astrometric and spectroscopic surveys (e.g. Gaia, APOGEE, GALAH) collect the signatures of these past events in the building history of the Milky Way. However, simulations and models are necessary to decode the data. In this talk, I will present results from a series of hydrodynamical simulations of Milky Way-like galaxies, both in isolation and in cosmological context using the VINTERGATAN simulation. I will show the crucial role of mergers, and of the end of the merger phase, in forming the thick and thin Galactic discs, and making the transition between the two. I will then nuance this conclusion by explaining why the secular consumption of gas enables a similar transition, as well as the emergence of spirals, without any external factors.


2aDhmVH7DCc-thumbnail
Tuesday June 9, 2020
University of Pennsylvania

Abstract

Stellar populations vary across the galaxy population. However, even within a single galaxy, there are stellar population gradients which spatially resolved spectroscopic studies are beginning to reveal. The MaNGA survey permits a study of gradients in a sample of early-type galaxies which is nearly two orders of magnitude larger than previous work. This allows us to quantify the effects of gradients on estimates of the stellar and dynamical masses of these galaxies, and to study how age and abundance gradients, and thus star formation and assembly histories, vary across the population. In this talk I will present results from our recent analysis.

 

zoom link: https://rediris.zoom.us/j/97614680345


« Newer 1 | 2 | 3 | 4 Last >>

Upcoming talks

  • TBD
    Thursday March 7, 2024 - 10:30 GMT  (Aula)
  • TBD
    Prof. Kentaro Nagamine
    Thursday March 21, 2024 - 10:30 GMT  (Aula)

More upcoming talks

Recent Colloquia


Recent Talks