Found 25 talks width keyword SDSS
Abstract
Galaxies and the dark matter halos in which they reside are intrinsically connected. That relationship holds information about key processes in galaxy and structure formation. In this talk, I will consider how the galaxy-halo connection depends on position within the cosmic web - the familiar decomposition of large-scale structure in filaments, knots and voids. Simulations demonstrate the various ways in which the cosmic web modulates the growth and dynamics of halos. The extent to which the cosmic web impacts on galaxies is more difficult to establish. For example, galaxies might be sensitive only to the evolution of the host halo, in which case any effect of the cosmic web on galaxies is secondary, and can be inferred from the halo's history. There is evidence, however - from simulations and observations - that the cosmic web also impacts on the evolution of galaxies via the effect it has on the broader gas ecosystem in which they are embedded, as well as through "pre-processing" effects on group scale. So, how should we think of the cosmic web in its role as a transformative agent of galaxies? And what physical processes can we convincingly constrain from observations and simulations? In this talk I highlight recent work that addresses these questions.
Abstract
Youtube933518
Abstract
In this talk, I will present recent results on a new sample of extremely UV-luminous star-forming galaxies at z=2-4 discovered within the 9000deg^2-wide Baryon Oscillation Spectroscopic Survey database of the Sloan Digital Sky Survey. These puzzling sources show apparent magnitudes rivaling those of bright QSOs, but without any hint of AGN activity or being magnified by gravitational lensing. Instead, these sources are characterized by very young stellar populations (~ 10 Myr) and compact morphologies. The two highest-redshift sources in our sample show very high Lyman continuum (LyC, with >13.6 eV) escape fractions, up to fesc(LyC)~90%, being the most powerful ionizing sources identified so far among the star-forming galaxy population, both in terms of the intrinsic LyC photon production rate and escape. With SFRs~1000 Msun/yr, but almost un-obscured, and specific star formation sSFR >50-100 Gyr^-1, these sources are very efficient star-forming galaxies, possibly representing a short-lived phase in the evolution of massive and compact galaxies. I will highlight some unique properties observed in these sources including LyC emission, complex Lyman-alpha profiles, strong wind lines, SEDs, among others. Finally, I discuss the properties of these UV-bright sources in the broad context of galaxy formation and evolution, and possible implications to cosmic reionization.
Abstract
In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.
Abstract
Abstract
In this talk, we shall review the impact of the neutrino properties on the different cosmological observables. We shall also present the latest cosmological constraints on the neutrino masses and on the effective number of relativistic species. Special attention would be devoted to the role of neutrinos in solving the present cosmological tensions.
Abstract
Time-domain space missions have revolutionized our understanding of stellar physics and stellar populations. Virtually all evolved stars can be detected as oscillators in missions such as Kepler, K2, TESS and PLATO. Asteroseismology, or the study of stellar oscillations, can be combined with spectroscopy to infer masses, radii and ages for very large samples of stars. This asteroseismic data can also be used to train machine learning tools to infer ages for even larger stellar population studies, sampling a large fraction of the volume of the Milky Way galaxy. In this talk I demonstrate that asteroseismic radii are in excellent agreement with those inferred using Gaia and spectroscopic data; this demonstrates that the current asteroseismic data is precise and accurate at the 1-2% level. Major new catalogs for Kepler and K2 data are nearing completion, and I present initial results from both. We find unexpected age patterns in stars though to be chemically old, illustrating the power of age information for Galactic archeology. Prospects for future progress in the TESS era will also be discussed.
Abstract
Although the name 'fundamental metallicity relation' (FMR) may sound a bit bombastic, it really represents a fundamental relation in the sense of revealing a fundamental process in galaxy formation. Numerical simulations predict that accretion of cosmic web gas feeds star formation in star-forming galaxies. However, this solid theoretical prediction has been extremely elusive to confirm. The FMR, i.e., the fact that galaxies of the same stellar mass but larger star formation rate (SFR) tend to have smaller gas-phase metallicity (Zg), is one of the best observational supports available yet. The talk will introduce the FMR and then present recent results of our group showing how the FMR emerges from a local anti-correlation between SFR and Zg existing in the disks of galaxies. Thus, understanding the FMR is equivalent to understanding why active star-forming regions tend to have low relative metallicity. The existence of the local anti-correlation SFR-vs-Zg is found by Sanchez-Menguiano+19 ApJ and Sanchez Almeida+18 MNRAS, whereas the equivalence between local and global laws is in Sanchez Almeida & Sanchez-Menguiano 19 ApJL.
Abstract
The Sloan Digital Sky Survey (SDSS) is one of the most successful and prolific projects in the history of Astronomy.
In its fifth iteration SDSS-V (2020-2025) will provide a more comprehensive, global picture of the local universe by
studying the interplay between galactic genesis, stellar and black hole processes, and the physics of the ISM. I will
review the main science goals of the project, the exciting new hardware being implemented (robot fibre positioner,
large IFU systems), and the operational challenges. As in its previous incarnations, SDSS-V remains committed to
providing high-quality data products for the astronomical and educational communities. I will discuss some of the
new ideas being developed for SDSS-V with regards to data reduction, release, archival, and visualisation.
Abstract
The SDSS Apache Point Observatory Galactic Evolution
Experiment (APOGEE) has
collected high resolution near-IR spectra of several hundred thousand stars
across the Milky Way. I'll describe some observational results about the
spatial variation of chemical abundances as a function of Galactocentric
radius and distance from the midplane, discussing mean abundances,
metallicity
distribution function, and the variation of abundance ratios of multiple
elements. Additional information related to stellar ages can be obtained
from [C/N] for red giant stars. Several lines of evidence suggest that
radial
migration has had a significant impact on the Galactic disk. The
observed patterns of
abundance ratios may provide observational constraints on
nucleosynthetic yields.
« Newer 1 | 2 | 3 Older » Last >>
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)