Found 5 talks width keyword polarimetry
Abstract
Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.
Abstract
The Chromosphere and Prominence Magnetometer (ChroMag) is a synoptic instrument with the goal of quantifying the intertwined dynamics and magnetism of the solar chromosphere and in prominences through imaging spectro-polarimetry of the full solar disk in a synoptic fashion. The picture of chromospheric magnetism and dynamics is rapidly developing, and a pressing need exists for breakthrough observations of chromospheric vector magnetic field measurements at the true lower boundary of the heliospheric system. ChroMag will provide measurements that will enable scientists to study and better understand the energetics of the solar atmosphere, how prominences are formed, how energy is stored in the magnetic field structure of the atmosphere and how it is released during space weather events like flares and coronal mass ejections. An essential part of the ChroMag program is a commitment to develop and provide community access to the `inversion' tools necessary to interpret the measurements and derive the magneto-hydrodynamic parameters of the plasma. Measurements of an instrument like ChroMag provide critical physical context for the Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS) as well as ground-based observatories such as the future Daniel K. Inouye Solar Telescope (DKIST). A prototype is currently deployed in Boulder, CO, USA. We will present an overview of instrument design and capabilities, show some recent observations, and discuss the future of the project.
Abstract
Solar magnetism may look deceptively boring (a rather common star with relatively low activity). As it turns out, even the most quiet areas of the Sun (away from the sunspots) harbour a rich and interesting magnetic activity which is extremely complex and dynamic at spatial scales as small as ~100 km. And more importantly, this magnetism permeates most of the Sun, all the time. Therefore, it is not surprising that it might play an important role for solving some longstanding questions of stellar magnetism as: how is the million degree corona maintained when all sunspots have disappeared during the minimum of magnetic activity? And this is of interest not only for solar physics but for stellar astrophysics too, since it is expected that every star with a convective envelope harbours small-scale magnetic activity that we cannot hope to observe with the great detail we observe it in the Sun. From the first evidence of the presence of magnetic fields in the quiet areas of the Sun to the discovery of the smallest organised magnetic structures ever observed in a stellar surface just 30 years have passed. In this seminar, I will give an overview of our present knowledge about the small-scale quiet Sun magnetism. In particular, I will show how small loops of sizes of several hundreds of kilometers appear in the surface and travel across the solar atmosphere, reaching upper layers and having direct implications on chromospheric (coronal) magnetism. I will also show some of the properties of these newly discovered magnetic structures such as their spatial distribution, a key ingredient for understanding their origin.
Abstract
At the end of 2008, on ideas of teams from the Observatoire de la Côte d’Azur (OCA) and IAC, the CoRoT satellite observed the star HD 46375, known to host a non-transiting Saturn-mass exoplanet with a 3.023 day period. HD 46375 is the brightest star with a known close-in planet in the CoRoT accessible field of view. As such, it was targeted by the CoRoT additional program and observed in a CCD normally dedicated to the asteroseismology program, to obtain an ultra-precise photometric lightcurve and detect or place upper limits on the brightness of the planet. In addition, a ground-based support was simultaneously performed with the high-resolution NARVAL spectro-polarimeter to constrain the stellar atmospheric and magnetic properties. In this seminar, I will present the main results, in particular the stellar constrain we obtained thanks to the detection of the oscillation mode signature and the plausible detection of the planetary signal, which, if confirmed with future observations, would be the first detection of phase changes in the visible for a non-transiting planet.
Abstract
ExPo is an imaging polarimeter that has been built in Utrecht University. ExPo works in the visible, and it combines the dual-beam technique, together with very short exposure times and a high polarization sensitivity. After four successful campaigns at the William Herschel Telescope, we have obtained polarization images of circumstellar environments around T Tau's and Herbig Ae's stars, evolved (post-AGB) stars and planets like Venus and Saturn. Our results prove the utility of imaging polarimetry to characterize faint structures around very different objects. In this talk I will go through the instrument details, and I will show some of our science results.
« Newer Older »
Upcoming talks
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)