Found 2 talks width keyword ESPRESSO

F4XBYrxsrC8-thumbnail
Tuesday November 23, 2021
Lund Observatory (Sweden)

Abstract

The new generation of spectrometers designed for extreme precision radial velocities enable correspondingly precise stellar spectroscopy. It is now fruitful to theoretically explore what the information content would be if stellar spectra could be studied with spectral resolutions of a million or more, and to deduce what signatures remain at lower resolutions. Hydrodynamic models of stellar photospheres predict how line profiles shapes, asymmetries, and convective wavelength shifts vary from disk center to limb. Corresponding high-resolution spectroscopy across spatially resolved stellar disks is now practical using differential observations during exoplanet transits, thus enabling the testing of such models. A most demanding task is to understand and to model spectral microvariability toward the radial-velocity detection of also low-mass planets in Earth-like orbits around solar-type stars. Observations of the Sun-as-a-star with extreme precision spectrometers now permit searches for spectral-line modulations on the level of a part in a thousand or less, feasible to test against hydrodynamic models of various solar features.


Ubij6YInPDE-thumbnail
Tuesday March 2, 2021
ESO

Abstract

The search for extrasolar planets is one of the fastest-growing fields of astronomy. This rapid growth was both made possible by the development of instrumentation and motivated it, creating a virtuous cycle that impacted positively several fields of research.

In this talk I will present the latest planet-hunting spectrograph ESPRESSO, installed at ESO's VLT. Targeting a radial velocity precision of 10 cm/s, ESPRESSO has the declared goal of detecting an Earth-mass planet inside the habitable zone of a main-sequence dwarf star. I will discuss the first results, ongoing campaigns, and reveal a bit of what the future holds for us.



« Newer Older »