Found 7 talks width keyword stellar kinematics

AMnQBLJEJzE-thumbnail
Thursday October 13, 2022
Technion University, Israel

Abstract

Exciting things may have happened sometimes to the stars we see in the sky today. For example, Betelgeuse, also known as Alpha-Ori, an M-type red supergiant, the 10th brightest sky in the sky (usually), may well have been a binary star in the past. Its rapid rotation, peculiarly large Galactic velocity, and unusual chemical abundances all point to it being kicked out from the birth environment and merging as a binary star. By comparing a Monte-Carlo stellar cluster population model with the observed populations of Galactic O- and B- type stars (progenitors of red supergiants), I will show that the story of Betelgeuse is not at all uncommon. In distant galaxies, closely related scenarios may give rise to peculiar core-collapse supernovae. I will conclude by briefly discussing how the diversity of such binary and triple stellar evolution histories reflects in the variety of the currently discovered core-collapse supernovae.


jKmifm17bno-thumbnail
Tuesday September 20, 2022
Penn State University

Abstract

Massive stars (at least eight times as massive as the Sun) possess strong stellar winds driven by radiation. With the advent of the so called MiMeS collaboration, an increasing number of these massive stars have been confirmed to have global magnetic fields. Such magnetic fields can have significant influence on the dynamics of these stellar winds which are strongly ionized. Such interaction of the wind and magnetic field can generate copious amount of X-rays, they can spin the star down, they can also help form large scale disk-like structures. In this presentation I will discuss the nature of such radiatively-driven winds and how they interact with magnetic fields.

https://youtu.be/jKmifm17bno


UBJgoEWw1tc-thumbnail
Tuesday January 25, 2022
Australian National University

Abstract

The field of Galactic archaeology has been very active in recent years, with a major influx of data from the Gaia satellite and large spectroscopic surveys. The major science questions in the field include Galactic structure and dynamics, the accretion history of the Milky Way, chemical tagging, and age-abundance relations. I will give an overview of GALAH as a large spectroscopic survey, and describe how it is complementary to other ongoing and future survey projects. I will also discuss recent science highlights from the GALAH team and compelling questions for future work.


UVMNG1N2Tko-thumbnail
Wednesday June 10, 2015
University of Heidelberg

Abstract

I will talk about our current understanding of globular cluster (GC) formation and what we have yet to learn about them. I will particularly focus on the chemical and dynamical properties of the neglected GC NGC4372, which I studied for the first time with  high-resolution spectroscopic observations.
Its chemical abundances revealed it as a typical representative of the old, metal-poor halo group. More interesting, however, are its structural and kinematic properties as the cluster has an unusually high intrinsic rotation for its metallicity and appears to be rotationally flattened. I will discuss what
rotating GCs tell us about their early evolution.


pcwILN4O1RE-thumbnail
Tuesday May 13, 2014
Max-Planck-Institut für Astronomie

Abstract

Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes correlate with properties of the host-galaxy bulge component. These empirical scaling relations are important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Our spectroscopic survey with the Hobby-Eberly Telescope of 1000 nearby galaxies revealed several compact lenticular galaxies with extremely high velocity dispersions. The first example is NGC1277, which is a small, Re=1kpc, compact, lenticular galaxy with a mass of 1.2×10^11 solar masses. From the stellar kinematics we determined that the mass of the central black hole is 10^10 solar masses, more than 10 per cent of its bulge mass. I will present HST images and IFU spectroscopy of a dozen more compact galaxies that all appear to host extremely big black holes and have Salpeter-like IMFs. These local systems, with distances less than 100 Mpc, could be the passively evolved descendents of the quiescent compact nugget galaxies found at z~2 and the >10e9 Msun quasars that are found at z>6.


-thumbnail
Tuesday September 21, 2010
Max Planck Institute for Astronomy, Heidelberg, Germany

Abstract

Two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON allow the classification of early-type galaxies into 'slow' and 'fast' rotators, different from their morphological classification into ellipticals and lenticulars. Most fast rotators, including lenticular as well as many elliptical galaxies, are consistent with oblate axisymmetric disk-like systems. On the other hand, the slow-rotator ellipticals show clear deviations from axisymmetry, which can be modeled with our extension of Schwarzschild's orbit superposition method to triaxial geometry. Besides galaxies, I show that Schwarzschild's method can also be used to model in detail globular clusters such as ω Cen and M15. The recovered internal orbital structure of ω Cen reveals besides a signature of tidal interaction, also a central stellar disk, supporting its origin as the nucleus of a stripped dwarf galaxy. The formally best-fit Schwarzschild model for M15 includes an intermediate-mass black hole, but we cannot exclude a model in which dark remnants make up the dark mass in the collapsed core.


2MXuD4abyOc-thumbnail
Thursday July 22, 2010
Centro Astronómico Hispano Alemán de Calar Alto, Spain

Abstract

CALIFA is the largest IFS survey ever performed up to date. Recently started, it will observe ~600 galaxies in the Local Universe with PPAK at the 3.5m of the Calar Alto Observatory, sampling most of the size of these galaxies and covering the optical wavelength range between 3700-7100 Å, using to spectroscopic setups. The main goal of this survey is to characterize the spatially resolved spectroscopic properties (both the stellar and ionized gas components) of all the population of galaxies at the current cosmological time, in order to understand in detail the how is the final product of the evolution of galaxies. To do so, the sample will cover all the possible galaxies within the color-magnitude diagram, down to MB ~ -18 mag, from big dry early-types to active fainter late-type galaxies. The main science drivers of the survey is to understand how galaxies evolve within the CM-diagram, understanding the details the process of star formation, metal enrichment, migrations and morphological evolution of galaxies.


« Newer Older »

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks