Found 20 talks width keyword cold dark matter
Abstract
Bosonic ultra-light dark matter (ULDM) in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ has been invoked as a motivated candidate with new input for the small-scale `puzzles' of cold dark matter. Numerical simulations show that these models form cored density distributions at the center of galaxies ('solitons'). These works also found an empirical scaling relation between the mass of the large-scale host halo and the mass of the central soliton. We show that this relation predicts that the peak circular velocity of the outskirts of the galaxy should approximately repeat itself in the central region. Contrasting this prediction to the measured rotation curves of well-resolved near-by galaxies, we show that ULDM in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ is in tension with the data.
Abstract
Cosmological and astrophysical experimental data demark a large share of the limits of our knowledge in fundamental physics. I'll review two pieces of evidence of our ignorance: the nature of dark matter and the generation of baryon asymmetry in the universe, together with some of the proposed solutions to each. Finally, a novel connection between the two open problems will be presented.
Abstract
The expansion of the Universe is in an accelerated phase. This
acceleration was first estabilished by observations of SuperNovae, and
has since been confirmed through a range of independent observations.
The physical cause of this acceleration is coined Dark Energy, and
most observations indicate that Einsteins cosmological constant
provides a very good fit. In that case, approximately 70% of the
energy of the Universe presently consists of this cosmological
constant.
I will in this talk address the possibility that there may exist other
possible causes of the observed acceleration. In particular will I
discuss a concrete model, inspired by the well-known Lorentz force in
electromagnetism, where Dark Matter causes the acceleration. With a
fairly simple numerical simulation we find that the model appears
consistent with all observations.
In such a model, where Dark Matter properties causes the acceleration
of the Universe, there is no need for a cosmological constant.
Abstract
Twenty years ago, no one convincingly knew the age or the size of the
Universe to within a factor of two. Ten years ago, everyone agreed on
those same two numbers to within 10%. Today, we arguably have brought
the errors down by another factor of two. But that has led to anxiety
rather than euphoria, renewed interest rather than complacency. The
problem is that there are now two independent, competing methods
giving answers of comparable precision and accuracy:
one is a model-based method using the cosmic microwave background
(the CMB), the other is a geometric, parallax-based method using local
measures of distances and expansion velocities. To within about
two-sigma the methods agree. To within about two-sigma the methods
disagree. And basic physics (a fourth neutrino species, perhaps) hangs
in the balance.
I will discuss how this "tension" arose and how it will soon be
relieved. A tie-breaker has been identified and developed, and it is
now being worked on from the ground and from space.
Abstract
I will review some theoretical ideas in Cosmology different to the standard "Big Bang": the Quasi-steady State model, Plasma Cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Some open problems of Cosmology within the standard model will also be summarized.
Abstract
Abstract
In the first part of this talk I will present a historical review of the CMB observations, one of the most powerful cosmological probes. Following the first talk of this series, where Jose Alberto described the basic parameters that define the standard cosmological model, I will here summarize the constraints to these parameters that have been derived from these observations. I will also describe the current challenges in this field, in particular the detection of the inflation's B-mode signal through CMB polarization observations, as well as the experiments that have been developed worldwide to this aim, including IAC's QUIJOTE. In the second part, I will focus on the so-called ``missing baryon problem'', i.e. the fact that the half of the expected baryon content of the local universe remains yet undetected. I will describe the theoretical studies that provide hints on where these baryons could be located, and the observational efforts that have been undertaken in this regard.
Abstract
This is the first talk of a series of four aimed to discuss about Cosmology. Here, I will review the basic concepts of the standard cosmological model, which will be further discussed in the following talks, as well as the observational evidence in support of the Lambda-CDM model. As the subject is very broad, I will focus the discussion on topics related with inflation, dark matter and dark energy. Moreover, I will mainly discuss large scale structure probes.
Abstract
The distribution of matter in galaxies of different luminosities and Hubble types, as inferred from observations, plays an important role in cosmology, extragalactic astrophysics, astroparticle physics, as well as in a number of issues in high-energy astrophysics, galactic astronomy, star formation and evolution and general relativity. Not withstanding the general successes of the ΛCDM model in explaining the structure and evolution of the universe, there is a growing conviction that the structural properties of the dark and luminous components in galaxies hold important clues about the nature of dark matter and about the processes that are responsible for galaxy formation. This talk is part of an international initiative known as "Dark Matter Awareness Week".The overall purpose of this event is to increase the awareness of the phenomenology of the mass discrepancy phenomenon in galaxies amongst the many scientists currently working with a theoretical, observational, experimental and simulation approach on issues involving dark matter or its alternatives. The content of the talk will be at the level of a journal club talk with an important dose of review.
Abstract
The standard model of cosmology -- the ``Lambda cold dark matter'' model -- is based on the idea that the dark matter is a collisionless elementary particle, probably a supersymmetric particle. This model (which mostly dates back to an early workshop in Santa Barbara in the 1980s) has been famously verified by observations of the cosmic microwave background radiation and the large-scale distribution of galaxies. However, the model has yet to be tested conclusively on the small scales appropriate to most astronomical objects, such as galaxies and clusters. I will review our current understanding of the distribution of dark matter on small scales which derives largely from large cosmological N-body simulations and I will discuss prospects for detecting dark matter, either through its gravitational effect on galaxies and clusters or, more directly, through gamma-ray annihilation radiation.<< First « Newer 1 | 2 Older »
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)