Found 7 talks width keyword molecular gas
Abstract
In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.
Abstract
This talk will be dedicated to luminous (LBol~1E47 erg/s),
high-redshift quasars, which are ideal targets to investigate (i) feedback
from SMBHs, and (ii) the early growth phases of giant galaxies. I will
present evidence of SMBH-driven outflows at all Cosmic epochs, back to
the early Universe. These outflows involve all gas phases (molecular,
neutral, ionised) and extend on nuclear to galactic and circum-galactic
scales. I will report on the first systematic study of the molecular gas
properties in the host-galaxies of the most luminous quasars, fundamental
to probe the impact of SMBH feedback on the host-galaxy evolution. I will
show that luminous quasars pinpoint high-density sites where giant galaxies
assemble, and I will discuss the major contribution of mergers to the final
galaxy mass. To this aim, I will present a wealth of multi-wavelength (UV
to sub-millimeter) observations from the WISE/SDSS hyper-luminous quasars
survey at z~2-5 (WISSH), and recent results from the ESO large program
XQR-30, the Ultimate X-SHOOTER Legacy Survey of Quasars at the Reionization
epoch.
Abstract
Gas kinematics on the scales of Giant Molecular Clouds (GMCs) are essential for probing the framework that links the large-scale organization of interstellar gas to cloud formation and subsequent star formation. I will present an overview of results from the PdBI Arcsecond Whirlpool Survey (PAWS, PI: E. Schinnerer), which has mapped CO(1-0) emission over 9 kpc in the nearby grand-design spiral galaxy M51 at 40 pc resolution, and is sensitive to giant molecular clouds (GMCs) with masses above 10^5 Msun. This unprecedented view challenges the conventional picture of how molecular gas is structured and organized in galaxies: clouds are not ‘universal’, but respond to their environment, resulting in a diversity of cloud properties that not only depend on (dynamical) environment but also vary from galaxy to galaxy. I will discuss how this sensitivity to environment emerges, in consideration of the stability of M51’s GMCs (including the effects of pressure, shear, turbulence) and our view of non-circular motions in the gas disk. As a result of the strong streaming motions that arise due to departures from axisymmetry in the gravitational potential (i.e. the nuclear bar and spiral arms), embedded clouds feel a reduced surface pressure, which can prevent collapse. This dynamical pressure naturally leads to changes in the efficiency of star formation and hence gas depletion time along the spiral arms. I will show that local reductions to cloud surface pressure in M51 dominate over shear and star formation feedback-driven turbulence in determining the observed radial variation the depletion time. I will also describe how incorporating a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies, across cosmic time.
Abstract
I will review some recent results about the molecular content of galaxies and its dynamics, obtained from CO lines, dense tracers (HCN,HCO+), or the dust continuum emission. New data to constrain the conversion factor XCO will be discussed. The molecular surface density is essential to determine the star formation efficiency in galaxies, and the resolved Kennicutt-Schmidt law will be presented as a function of surface density and galaxy type. Large progress has been made on galaxy at moderate and high redshifts, allowing to interprete the star formation history and star formation efficiency as a function of gas content, or galaxy evolution. In massive galaxies, the gas fraction was higher in the past, and galaxy disks were more unstable and more turbulent. ALMA observations will allow the study of more normal galaxies at high z with higher spatial resolution and sensitivity.
Abstract
In this talk I consider two questions. First, I investigate the formation of molecular clouds from diffuse interstellar gas. It has been argued that the midplane pressure controls the fraction of molecular hydrogen present, and thus the star formation rate. Alternatively, I and others have suggested that the gravitational instability of the disk controls both. I present numerical results demonstrating that the observed correlations between midplane pressure, molecular hydrogen fraction, and star formation rate can be explained within the gravitational instability picture. Second, I discuss how ionization affects the formation of massive stars. Although most distinctive observables of massive stars can be traced back to their ionizing radiation, it does not appear to have a strong effect on their actual formation. Rather, I present simulations suggesting that stars only ionize large volumes after their accretion has already been throttled by gravitational fragmentation in the accretion flow. At the same time these models can explain many aspects of the observations of ultracompact H II regions.
Abstract
In this talk I will present the first complete 12CO J=3-2 map of M81, observed as part of the Nearby Galaxies Legacy Survey. We have detected nine regions of significant CO emission located at different positions within the spiral arms, and confirmed that the global CO emission in the galaxy is low. Using a new Hα map obtained with the Isaac Newton Telescope and archival data I will discuss a series of topics including the correlation between the molecular gas and star forming regions, the CO (3-2)/(1-0) line ratio, and the amount of hydrogen produced in photo-dissociation regions near the locations where CO J=3-2 was detected.
Abstract
We present the results of our systematic search for optically elusive, but intrinsically luminous buried AGNs in >100 nearby (z < 0.3) luminous infrared galaxies with L(IR) > 1011 L⊙, classified optically as non-Seyferts. To disentangle AGNs and stars, we have performed (1) infrared 2.5-35 μ low-resolution (R ~ 100) spectroscopy using Subaru, AKARI, and Spitzer, to estimate the strengths of PAH (polycyclic aromatic hydrocarbon) emission and dust absorption features, (2) high-spatial-resolution infrared 20 micron imaging observations using Subaru and Gemini, to constrain the emission surface brightnesses of energy sources, and (3) millimeter interferometric measurements of molecular gas flux ratios, which reflect the physical and chemical effects from AGNs and stars. Overall, all methods provided consistent pictures. We found that the energetic importance of buried AGNs is relatively higher in galaxies with higher infrared luminosities (where more stars will be formed), suggesting that AGN-starburst connections are luminosity dependent. Our results might be related to the AGN feedback scenario as the possible origin of the galaxy down-sizing phenomenon.« Newer Older »
Upcoming talks
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)