Found 37 talks width keyword star formation
Abstract
Abstract
Galactic globular clusters have always been at the crossroad of several investigations in both Stellar and Galactic Astrophysics. For long time, they have been considered the prototypes of Simple Stellar Populations, and hence used for testing and calibrating stellar evolutionary models as well as population synthesis tools. Nowadays, after the discovery of the presence of multiple stellar populations in almost all Galactic GCs, we know that this assumption is no longer valid. The process(es) of formation and early evolution of these star clusters is (are) very far to be understood, and any scenario so far envisaged is severely challenged by the pletora of empirical evidence collected till now. In the same time, thanks to the availability of an impressive observational framework - collected by combining kinematic measurements from Gaia mission, with data provided by large spectroscopic and photometric surveys -, GCs are playing a crucial role for our understanding of the assembly history of the Milky Way. We will review our present knowledge about these important stellar systems, discussing the several, open issues related to their formation/evolution, and discuss how we can use them in our effort to depict the Milky Way assembly history.
Abstract
Globular clusters (GCs) are fascinating objects nearly as old as the Universe that provide insight on a large variety of astrophysical and cosmological processes. However, their formation and their early and long-term evolution are far from being understood. In particular, the classical paradigm describing GCs as large systems of coeval stars formed out of chemically homogeneous material has been definitively swept away by recent high-precision spectroscopic and deep photometric observations. These data have provided undisputed evidence that GCs host multiple stellar populations, with very peculiar chemical properties. In this talk, I will review the properties of these multiple populations, before presenting the different scenarios that have been proposed to describe their formation. I will focus on the (many) current theoretical issues and open questions.
Abstract
The stellar initial mass function (IMF) is usually assumed to be a probability density distribution function. Recent data appear to question this interpretation though, and I will discuss alternative applications and results concerning the possibly true nature of the IMF. Empirical evidence has emerged that the IMF becomes top-heavy in intense star bursts and at low metallicity. Related to the IMF are binary star distribution functions, and these evolve through dynamical processes in embedded star clusters. The insights gained from these considerations lead to a mathematically computable method for calculating stellar populations in galaxies, with possibly important implications for the matter cycle in galaxies. It turns out that the galaxy-wide IMF, the IGIMF, becomes increasingly top-heavy with increasing galaxy-wide star formation rate, while at the same time the binary fraction in the galactic field decreases.
Abstract
The importance of Luminous and Ultraluminous infrared galaxies (U/LIRGs) in the context of the cosmological evolution of the star-formation has been well established in the last decades. They have been detected in large numbers at high-z (z>1) in deep surveys with Spitzer and Herschel, and they seem to be the dominant component to the star formation rate (SFR) density of the Universe beyond z~2. Although rare locally, nearby U/LIRGs are valuable candidates to study extreme cases of compact star-formation and coeval AGN. In particular, the study of local U/LIRGs using near-IR integral field spectroscopic techniques allows us to disentangle the 2D distribution of the gas and the star-formation using high spatial resolution, and characterise dust-enshrouded, spatially-resolved star-forming regions with great amount of detail. In that context, we are carrying on a comprehensive 2D IFS near-IR survey of local 10 LIRGs and 12 ULIRGs, based on VLT-SINFONI observations. I will review different topics on the spatially resolved study of the ISM and the star-formation at different spatial scales. I will focus on the analysis of the multi-phase gas morphology and kinematics, and on the study of the spatially-resolved distribution of the extinction-corrected star-formation rate (SFR) and star-formation rate surface density (ΣSFR). In particular, I will present some recent results on the characterization of individual star-forming regions, in terms of their sizes and Paα luminosities.
Abstract
With the aim of testing the relation between supernova (SN) rate and star formation rate, we conducted a SN search in a sample of local starburst galaxies (SBs) where both star formation rates and extinction are extremely high. The search was performed in the near-infrared, where the bias due to extinction is reduced using HAWK-I on the VLT. We discovered six SNe, in excellent agreement with expectations, when considering that, even in our search, about 60% of events remain hidden in the nuclear regions due to a combination of reduced search efficiency and very high extinction.
In addition I will present my plans for next months at IAC for the "Starbursts and EMIR project". I will participate in the commissioning of the instrument at La Palma, collaborating in the development of the ETC and I will compile a catalog of starbursts for EMIR with the aim to study their imprint in the cosmic evolution of galaxies.
Abstract
How does the group environment hamper star-formation in star-forming galaxies?
Abstract: We present the first results from the H-alpha Galaxy Groups Imaging Survey (HAGGIS), a narrow-band imaging survey of SDSS groups at z < 0.05 conducted using the Wide Field Imager (WFI) on the ESO/MPG 2.2 meter telescope and the Wide Field Camera (WFC) on the Issac Newton Telescope (INT). In total, we observed 100 galaxy groups with wide range of halo mass 10^12 - 10^14 M_sun in pairs of narrow-band filters selected to get continuum subtracted rest-frame H-alpha images for each galaxy in these groups. The excellent data allows us to detect H-alpha down to the 10^(-18) ergs/s/cm^2/arcsec^2 level. Here, we examine the role played by halo mass and galaxy stellar mass in deciding the overall star formation activity in star forming disks by comparing stacked H-alpha profiles of galaxies in different halo mass and stellar mass bins. With this preliminary study, we have found that the star-formation activity in star-forming galaxies decreases in larger halos compared to the field galaxies. Using median equivalent width profiles, we can infer how environmental processes affect star-forming galaxies differently at different radii.
Abstract
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is now performing scientific observations and the results of the second open observing cycle solicitation is about to be announced. With an available wavelength coverage from the visual to sub-mm wavelengths and a long life time - including planned instrument upgrades, SOFIA will provide critical resource for the astronomical community for the next decade and beyond. Current and expected SOFIA instruments provide heterodyne spectroscopy in the THz band, including the line of [O I], [C II] and [N II] as well as OH, HD and many other hydrides, at high spectral resolution. Echelle spectroscopy in the Mid-infrared (MIR) which will allow observations of e.g. fine-structure lines of and H2 pure rotational lines. These will help address questions of interstellar chemistry and physics in star forming regions, PDRs and galaxies. Mid-infrared (MIR) grism spectroscopy, of e.g. dust and ices, can be used to address questions of the freeze-out of molecules from the gas phase to better understand the formation, destruction and characteristics of interstellar ices. Imaging in the MIR and FIR and FIR polarimetry can provide a more complete picture of the temperature, density and magnetic field structure of e.g. star forming cores. I will highlight the current and expected capabilities of SOFIA and some of the early science results achieved.
Abstract
In the last years star-forming regions and massive protostars have been suggested to be gamma-ray emitters. Isolated massive protostars present powerful outflows interacting with the surrounding medium. Some of these sources power non-thermal radio jets, indicative of particle acceleration up to relativistic energies. At the jet-termination region strong shocks form which can lead to gamma-ray emission, as theoretical models predict. It has also been prognosticated that the combined effect of several low-mass protostellar objects may produce significant amount of gamma rays. We present here two studies: IRAS 16547- 4247, an isolated protostar showing non-thermal radio emission; and Monoceros R2, a star forming region coincident with a source of the 2nd Fermi-LAT catalog. In the first case, we analized archival X-ray data and detected the source. We also studied the system in a broad- band one-zone model context and tried to fit the X-ray detection with a non-thermal model. In the second case, we analyzed 3.5 years of Fermi-LAT data and confirmed the source with a detection above 12 sigma. Our results are compatible with the source being the result the combined effect of multiple young stellar objects in Monoceros R2.
Abstract
The direct accretion of pristine gas streams is predicted to be the main mode of galaxy disk growth in the early universe (cold-flows). We (think we) have discovered this physical process at work in the local Universe. The finding is one of the outcomes of our in-depth study of local extremely metal poor (XMP) galaxies. I will explain the main observational properties of XMPs, in particular, their tendency to have cometary or tadpole morphology, with a bright peripheral clump (the head) on a faint tail. Tadpole galaxies are rare in the nearby universe but turn out to be very common at high redshift, where they are usually interpreted as disk galaxies in early stages of assembling. We have found the heads to be giant HII regions displaced with respect to the rotation center, with the galaxy metallicity being smallest at the head and larger elsewhere. The resulting chemical abundance gradient is opposite to the one observed in local spirals, and suggests a recent gas accretion episode onto the head. Thus, local XMP galaxies seem to be primitive disks, with their star formation sustained by accretion of external metal poor gas. I will argue how the same mechanism may be driving the star formation in many other local galaxies. Ongoing observational projects to confirm these findings and conjectures will be briefly mentioned.
« Newer 1 | 2 | 3 | 4 Older » Last >>
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)