Found 28 talks width keyword CMB
Abstract
In the first part of this talk I will present a historical review of the CMB observations, one of the most powerful cosmological probes. Following the first talk of this series, where Jose Alberto described the basic parameters that define the standard cosmological model, I will here summarize the constraints to these parameters that have been derived from these observations. I will also describe the current challenges in this field, in particular the detection of the inflation's B-mode signal through CMB polarization observations, as well as the experiments that have been developed worldwide to this aim, including IAC's QUIJOTE. In the second part, I will focus on the so-called ``missing baryon problem'', i.e. the fact that the half of the expected baryon content of the local universe remains yet undetected. I will describe the theoretical studies that provide hints on where these baryons could be located, and the observational efforts that have been undertaken in this regard.
Abstract
This is the first talk of a series of four aimed to discuss about Cosmology. Here, I will review the basic concepts of the standard cosmological model, which will be further discussed in the following talks, as well as the observational evidence in support of the Lambda-CDM model. As the subject is very broad, I will focus the discussion on topics related with inflation, dark matter and dark energy. Moreover, I will mainly discuss large scale structure probes.
Abstract
Over the next decade or so, the gravitational-wave window onto the Universe will be opened in four frequency bands that span 22 orders of magnitude: The high-frequency band, 10 to 10,000 Hz (ground-based interferometers such as LIGO and VIRGO), the low-frequency band, 10-5 to 0.1 Hz (the space-based interferometer LISA), the very-low frequency band, 10-9 to 10-7 Hz (pulsar timing arrays), and the extremely-low-frequency band, 10-18 to 10-16 Hz (polarization of the cosmic microwave background). This lecture will describe these four bands, the detectors that are being developed to explore them, and what we are likely to learn about black holes, neutron stars, white dwarfs and early-universe exotica from these detectors' observations.
Abstract
The Atacama Cosmology Telescope (ACT) has been observing the southern sky in the millimeter range with an angular resolution at the arc-minute level. An analysis of 228 square degrees observed at 148 GHz along a stripe centered at declination -53 degrees reveals the presence of the Silk damping tail in the temperature angular power spectrum of the Cosmic Microwave Background (CMB). This decaying tail becomes truncated by a rising spectrum at scales corresponding to few arcmins (l ~ 3000) whose origin is compatible with a unclustered population of unresolved point sources and some residual anisotropy due to Compton scattering of CMB photons off free electrons (the Sunyaev-Zel'dovich effect). Comparisons with other observations and constraints on different components giving rise to this secondary spectrum are discussed.Abstract
The standard model of cosmology -- the ``Lambda cold dark matter'' model -- is based on the idea that the dark matter is a collisionless elementary particle, probably a supersymmetric particle. This model (which mostly dates back to an early workshop in Santa Barbara in the 1980s) has been famously verified by observations of the cosmic microwave background radiation and the large-scale distribution of galaxies. However, the model has yet to be tested conclusively on the small scales appropriate to most astronomical objects, such as galaxies and clusters. I will review our current understanding of the distribution of dark matter on small scales which derives largely from large cosmological N-body simulations and I will discuss prospects for detecting dark matter, either through its gravitational effect on galaxies and clusters or, more directly, through gamma-ray annihilation radiation.Abstract
Peculiar velocities of galaxies, derived using distance estimators, are plagued with systematic effects and are unreliable beyond 100 Mpc/h. In Kashlinsky & Atrio-Barandela (2000) we proposed to measure peculiar velocities of clusters of galaxies using the temperature anisotropies on the Cosmic Microwave Background generated by the hot X-ray emitting. Using this technique we have recently found a bulk flow velocity of amplitude 600-1000 km/s in the same direction as the CMB dipole and encompassing a sphere of 300 Mpc/h radius. We shall discuss the cosmological implications of this measurement.Abstract
The amount of baryons seen in the local Universe falls short by a factor2-5 if compared to the amount of detected baryons at intermediate (z~2)or high (z~1,100) redshift. This is the so called "missing baryon" problem in Cosmology. Hydrodynamical simulations of the large scale structure predict that most of those missing baryons should be in the form of ionized gas present in slightly overdense regions, at a temperature ranging from 10^5 to 10^7 K, conforming the "Warm Hot Intergalactic Medium" (WHIM). This WHIM would not form stars, and would not emit or absorb either in the IR, optical or UV. However, it should interact with the photons of the Cosmic Microwave Background (CMB) through two different channels: (i) Thompson scattering (where there is no energy exchange) and (ii) Compton scattering (where hot electrons transfer energy to the CMB photons, distorting their black body spectrum). I shall review the status of the search for missing baryons in the context of CMB observations and the currently most favored cosmological model. I shall also outline new methods and prospects for detecting this missing gas with upcoming CMB experiments and address the link between the cosmic baryon problem and the search for (so far undetected) bulk flows at scales of ~10 Mpc/h.Abstract
Since its discovery in 1964, the cosmic microwave background (CMB) has been one of the basic pillars of the cosmological model. However, it is only very recently that CMB observations have become one of the most powerful tools in modern cosmology, due to the increasing accuracy of the experiments measuring the CMB anisotropies. In this talk, I will present a brief historical perspective of the history of the CMB observations, since the discovery until nowadays, with special emphasis on the implications and the impact of those observations in cosmology. Experiments like COBE, Tenerife, WMAP or PLANCK will be described. The last part of my talk will be devoted to describe the future of this field, and in particular, will be focused on the possibility of the detection of primordial gravitational-waves.<< First « Newer 1 | 2 | 3 Older »
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)