Found 10 talks width keyword star clusters

KsMWLj9jEbw-thumbnail
Tuesday May 24, 2022
Weizmann Institute

Abstract

Gravitational dynamical friction affecting the orbits of globular clusters (GCs) was studied extensively as a possible formation mechanism for nuclear star clusters in galaxies. In well-known examples that showcase this phenomenon, like the Milky Way and M31 galaxies, the medium which affects the dynamical friction is dominated by bulge stars. In comparison, the case for dynamical friction in dark matter-dominated systems is much less clear. A puzzling example is the Fornax dwarf galaxy, where the observed positions of GCs have long been suspected to pose a challenge for dark matter, dynamical friction theory, or both. We search for additional systems that are dark matter-dominated and contain a rich population of GCs, offering a test of the mechanism. A possible example is the ultra diffuse galaxy NGC5846-UDG1: we show that GC photometry in this galaxy provide evidence for the imprint of dynamical friction, visible via mass segregation. If confirmed by future analyses of more GC-rich UDG systems, these observations could provide a novel perspective on the nature of dark matter.


K-oF2wW9iKA-thumbnail
Wednesday November 19, 2014
Keele University

Abstract

We will start by recalling the effects of rotation on stellar evolution and briefly explain its implementation in a stellar evolution code. We will present a set of various grids of massive stars models, and then show some recent results obtained by our new SYCLIST toolbox, which is able (among other things) to generate synthetic stellar clusters, including various physical ingredients, such as initial rotation and angle of view distributions, gravity and limb darkening, etc.


y_Q8CeIs8q8-thumbnail
Wednesday January 29, 2014
INAOE

Abstract

The nearby spiral galaxy M81 contains a population of 3 kinds of stellar clusters - super star clusters, globular clusters and fuzzy clusters. Over the past few years, we have taken GTC longslit spectra of around 20 of these clusters, with the intention of obtaining their spectroscopic ages. These spectra have allowed us to understand the nature of the brightest globular cluster in this galaxy. In addition, we were able to address the problem of the origin of the fuzzy clusters. In the talk, I will summarize the results we have obtained so far.


GSSR-QJP72U-thumbnail
Tuesday November 26, 2013
Instituto Nacional de Astrofísica Óptica y Electrónica, Puebla, México

Abstract

Following the observational and theoretical evidence that points at core collapse supernovae as major producers of dust, we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large supernova rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II supernova era (~ 3 Myr - 40 Myr). Such a balance determines the range of dust to gas mass ratio and this the dust cooling law. We then search for the critical line in the cluster mechanical luminosity (or cluster mass) vs cluster size, that separates quasi- adiabatic and strongly radiative cluster wind solutions from the bimodal cases. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V\infty, lower than when only gas radiative cooling is applied. And thus, massive clusters (M_sc > 10^5 Msun) are predicted to enter the bimodal regime.


LBVQ_DbW2T8-thumbnail
Thursday October 18, 2012
IAA

Abstract

The basis of stellar population modeling was established around 40 years ago somehow
optimized to the technical facilities and observational data available at that epoch. Since then,
it has been used extensively in astronomy and there has been great improvements relating
their associated ingredients in concordance with the development of more powerful computational
and observational facilities.
However, there has been no similar improvements in the understanding about what is
actually modeling neither in improve the modeling itself to include the current technical advances
to obtain more accurate result in the physical inferences obtained from them.
In this talk I present some advances in the subject of stellar
population modeling and how to take advantage of current facilities to obtain more robust
and accurate inferences from stellar systems at different scales
covering the continuum between fully resolved populations to fully unresolved ones in a unified framework.


xkoLU7nF_FU-thumbnail
Tuesday May 29, 2012
Instituto de Astrofísica de Canarias, Spain

Abstract

I am going to present the new massive and obscured cluster Masgomas-1. This cluster, discovered by our group formed by astronomers from the IAC and CEFCA, is the
first candidate derived from the preliminary version of our systematic search algorithm for obscured (and young) massive clusters, and part of the MASGOMAS project  (MAssive Stars in Galactic Obscured MAssive clusterS). In this talk I will present the spectrophotometric observations obtained with LIRIS at William Herschel Telescope (ORM), which allowed the physical characterization of the massive stellar population of Masgomas-1, and the confirmation of the  cluster's massive nature
(i.e. Mcl > 10^4 Msun).


-thumbnail
Tuesday October 20, 2009
University of Florida, USA

Abstract

ΛCDM-based numerical simulations predict a scenario consistent with observational evidence in Milky Way-like halos. However, less clear is the role of low-mass galaxies in the big picture. The best way to answer this question is to study the nearest example of a dwarf spiral galaxy, M33. We will use star clusters to understand the structure, kinematics and stellar populations of this galaxy. We will present our current status and future plans of a comprehensive study of the star cluster system of M33. This study will provide key insights into the star formation history, composition and kinematics of low-mass galaxies as well as place M33 within the context of galaxy formation process.

g9QNeWRFVQQ-thumbnail
Friday September 11, 2009
University of Alicante, Spain

Abstract

The last decade has brought the discovery of a large number of massive (M > 10000 M?) young open clusters in the Milky Way, which had previously not been thought to exist. I will present a brief review of these discoveries, with strong emphasis on the use of these clusters as astrophysical laboratories. I will also present the very recent discovery of a number of massive clusters concentrated towards a small region of the Scutum Arm, providing evidence for the existence of starburst activity on a much larger scale than previously assumed.


lssIKlklxI4-thumbnail
Wednesday January 21, 2009
European Southern Observatory, Garching, Germany

Abstract

The centers of massive galaxies are special in many ways, not least because all of them are believed to host supermassive black holes. Since the discovery of a number of relations linking the mass of this central black hole to the large scale properties of the dynamically hot component of its host galaxy (bulge) it has become clear that the growth of the central black hole is intimately connected to the evolution of its host galaxy. However, for bulge-less galaxies, the situation is much less clear. Interestingly, these galaxy often host star clusters in their nuclei, and unlike black holes, these nuclear star clusters provide a visible record of the accretion of stars and gas into the nucleus. I will present my ongoing projects on nuclear star clusters that aim to understand their formation process and might give a hint on how black holes get to the centers of galaxies.

U11lNhJFZaE-thumbnail
Monday November 17, 2008
Swinburne University, Australia

Abstract

In the Λ-CDM galaxy formation paradigm, the star formation history of a galaxy is coupled to the total mass of its dark matter halo through processes like galaxy-galaxy merging, satellite accretion, and gas retention. Globular cluster formation is known to coincide with strong star formation events in the early Universe. To develop an accurate model of galaxy formation, the relationship between such systems and their hosting dark matter halos must be understood. Employing weak gravitational lensing galaxy mass analysis, we have discovered that the number of globular clusters in a given galaxy is directly proportional to its total dark matter halo mass. This result holds in both dwarf and giant ellipticals, spirals and in all types of galaxy environments. I will present these observations and initiate a discussion on the implications for scenarios of globular cluster system formation and evolution.


« Newer Older »

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks