Found 23 talks width keyword galactic dynamics
Friday October 24, 2008
Instituto de Astrofísica de Canarias, Spain
Abstract
(1) We present SAURON integral-field stellar velocity and velocity dispersion maps for four double-barred early-type galaxies: NGC2859, NGC3941,NGC4725 and NGC5850. The presence of the nuclear bar is not evident from the radial velocity, but it appears to have an important effect in the stellar velocity dispersion maps: we find two sigma-hollows of amplitudes between 10 and 40 km/s at either sides of the center, at the ends of the nuclear bars. We have performed numerical simulations to explain these features. Ruling out other possibilities, we finally conclude that, although the sigma-hollows may be originated by a younger stellar population component with low velocity dispersion, more likely they are an effect of the contrast between two kinematically different components: the high velocity dispersion of the bulge and the ordered motion (low velocity dispersion) of the nuclear bar.(2) We have explored radial color and stellar surface mass density profiles for a sample of 85 late-type galaxies with available deep (down to ~27.0 mag/arcsec2 SDSS g'- and r'-band surface brightness profiles. About 90% of the light profiles have been classified as broken exponentials, exhibiting either truncations (Type II galaxies) or antitruncations (Type III galaxies). Their associated color profiles show significantly different behavior. For the truncated galaxies a radial inside-out bluing reaches a minimum of (g' - r') = 0.47 +/- 0.02 mag at the position of the break radius, this is followed by a reddening outwards. The anti-truncated galaxies reveal a more complex behavior: at the break position (calculated from the light profiles) the color profile reaches a plateau region - preceded with a reddening - with a mean color of about (g' - r') = 0.57 +/- 0.02 mag. Using the color to calculate the stellar surface mass density profiles reveals a surprising result. The breaks, well established in the light profiles of the Type II galaxies, are almost gone, and the mass profiles resemble now those of the pure exponential Type I galaxies. This result suggests that the origin of the break in Type II galaxies are most likely to be a radial change in stellar population, rather than being caused by an actual drop in the distribution of mass. The anti-truncated galaxies on the other hand preserve their shape to some extent in the stellar surface mass density profiles. We find that the stellar surface mass density at the break for truncated (Type II) galaxies is 13.6 +/- 1.6 Msun/pc2 and 9.9 +/- 1.3 Msun/pc2 for the anti-truncated (Type III) ones. We estimate that ~15% of the total stellar mass in case of Type II galaxies and ~9% in case of Type III galaxies are to be found beyond the measured break radii.
Wednesday July 16, 2008
Netherlands Institute for Radio Astronomy, the Netherlands
Abstract
Warps of disk galaxies are ubiquitous. In almost every disk galaxy a bending of the disk occurs where the stars fade away and hence where the dark matter halo becomes dominant. A clear understanding of this phenomenon has not been reached yet. Analysing H I observations of a small sample of symmetric, warped disk galaxies we found that they exhibit a two-disk structure, the warp being the transition from the inner flat disk to an outer, inclined one. At the transition radius, the rotation curve changes. This points towards symmetric warps being a long-lived phenomenon reflecting an internal change in the structure of the Dark Matter halo.While warps usually occur where the stellar disks fade, examples of extreme warps are known that commence already at the centre of galaxies. One is present in the neutral gas disk of the "Spindle Galaxy "NGC 2685, formerly thought of as being a two-ringed polar ring galaxy. Utilising deep HI observations, we found that the two-ringed appearance is due to projection effects and that it rather possesses one coherent,extremely warped HI disk. Our success in fitting a tilted-ring model to the HI component, and, with that, assuming circular orbits of the tracer material, and the shape of the fitted rotation curve hint towards a rather spherical shape of the overall potential.
Thursday June 19, 2008
University of Alabama, USA
Abstract
Bars are important engines for the evolution of structure in galaxies. Bars can cause secular evolution of both the gas and stellar distributions in galaxies, and recently it has been suggested that bars may be recurrent features, forming, dissolving, and reforming over a Hubble time. Models also have suggested that the strength of bars depends on how effectively the bar can transfer angular momentum to outer halo material. Evaluating current models requires an effective way of quantifying the strengths of bars. In my presentation, I will describe recent attempts to use gravitational torques implied by near-infrared images as a means of quantifying both bars and spirals in disk galaxies. I will also describe some of the recent findings based on Fourier analysis of early-type galaxy bars.<< First « Newer 1 | 2 | 3 Older »
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)