Found 89 talks width keyword galaxy evolution
Abstract
Many stars are observed to belong to multiple systems. Interactions between binary stars may change the evolutionary track of a star, creating atypical stars like Blue Stragglers and explaining the existence of extreme horizontal branch (EHB) stars. Using evolutionary population synthesis models including binary star evolutionary tracks from Hurley et al. and including the two He white dwarfs merger channel, suggested by Han et al., for the formation of EHB stars we compute a series of isochrones which include these atypical stars. We derive the integrated spectral energy distributions and the colors corresponding to these populations. The predictions of this model are in good agreement with traditional population synthesis models, except when the spectrum of the stellar population is dominated by binary stars or their products, e.g., EHB stars in the ultraviolet (UV) of early-type galaxies (ETGs) (Hernández-Pérez and Bruzual 2013). Using this binary population synthesis model we reproduce successfully the observed colour-colour diagram of a sample of 3417 ETGs observed both in the optical (SDSS -DR8) and the UV (GALEX-GR6) (Hernández-Pérez and Bruzual 2014). I will show how important is to consider binary interactions in evolutionary synthesis models.
Abstract
What can the shape and size of a galaxy tell us about how it has evolved across cosmic time? Which evolutionary mechanisms are important, or relevant, and which not? How do galaxies form in the early Universe? As we enter a new era of big-data astronomy, our capacity to further pursue answers to these questions is increasingly limited not by Human ingenuity but by our use of 20th century data analysis techniques. In this talk, I will summarise my work with the Galaxy And Mass Assembly (GAMA) Survey in measuring the multi-wavelength light profile and stellar mass properties of ~200,000 galaxies in the local Universe. I will show how the stellar mass function may be broken down by morphology and structural component, and the implications this has for our understanding on which evolutionary mechanisms are important in shaping the galaxies around us over the course of the last 1 billion years.
Abstract
There is increasing speculation that quasars are intimately linked to the evolution of their host galaxies. Not only are they triggered as galaxies build up mass through gas accretion, but they also have the potential to drive massive outflows that can directly affect galaxy evolution by heating the gas and expelling it from galaxy bulges. However, there remain considerable uncertainties about how, when and where quasars are triggered as galaxies evolve, and the true energetic significance for the quasar-induced outflows and their acceleration mechanism have yet to be established. In this talk I will present new Gemini, VLT, Spitzer and Herschel results on samples of luminous AGN in the local Universe which provide key information on the triggering mechanisms for quasars and physics of their outflows.
Abstract
Different components of galaxies are the result of internal and environmental processes during their lifetimes. Disentangling these processes is an important issue for understanding how galaxies form and evolve. In this context isolated galaxies provide a fruitful sample for exploring galaxies which have evolved mainly by internal processes (minimal merger/accretion/tidal effects). I will present the structural analysis performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project. The analysis of the stellar mass-size relation of our spiral galaxies reveals a larger size for disks in low-density environments, as well as a dependence of disk size on the number of satellites. A 2D bulge/disk/bar decomposition of SDSS i-band images was performed in order to identify the pseudobulges in our sample. We derived (g-i) bulge colors and find a large fraction of pseudobulges in the red sequence of early-type galaxies. The bluer pseudobulges in our sample tend to be located in those galaxies more affected by tidal interactions. The properties of the majority of bulges in isolated galaxies suggest that pseudobulges formed most of their mass at an early epoch, and that specific environmental events may rejuvenate pseudobulges.
Abstract
One of the most widely researched topics in Extragalactic Astrophysics
in the last decades is how early-type galaxies have formed their stars
and assembled. In this context, we now have unequivocal observational
evidences about the existence of a numerous population of massive
galaxies which not only had assembled a considerable amount of stars
(~10 11 M_sun) by z~2, but were already evolving passively by that
time. These galaxies, the likely progenitors of nearby ellipticals,
are also quite compact in comparison with local galaxies of the same
mass. These result are mainly based on measurements designed to obtain
stellar masses and sizes, and our estimations of these parameters are
now quite robust. Now we need a more secure determination of how
exactly they formed and assembled their stellar mass in just 2-3 Gyr
(z>2). In other words, how was their Star Formation History and which
are the properties (age, metallicity, dust content) of their stellar
populations? And how could they end up with such high masses and small
sizes? In this talk, we will present our results about the SFH (mainly
ages and duty cycles) of massive galaxies at z=1-3 based on the
deepest spectro-photometric data ever taken. These data were gathered
by the Survey for High-z Absorption Red and Dead Sources (SHARDS), a
ESO/GTC Large Program aimed at obtaining R~50 optical spectra of
distant galaxies. This resolution is especially suited to measure
absorption indices such as D(4000), Mg_UV, the Balmer break,etc.. for
galaxies up to z~3 (merging our SHARDS data with HST/WFC3 grism
observations) or emission-line fluxes for faint targets up to
z~6. These measurements represent a big step forward for the robust
determination of the stellar population properties, providing a much
more certain characterization of the stellar content of distant
galaxies than the typical broad-band studies. Our results uniquely
allow to study the stellar content of red and dead galaxies at z~2 and
identify progenitors at higher redshifts, as well as helping to
constrain the models of galaxy formation.
Abstract
Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes correlate with properties of the host-galaxy bulge component. These empirical scaling relations are important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Our spectroscopic survey with the Hobby-Eberly Telescope of 1000 nearby galaxies revealed several compact lenticular galaxies with extremely high velocity dispersions. The first example is NGC1277, which is a small, Re=1kpc, compact, lenticular galaxy with a mass of 1.2×10^11 solar masses. From the stellar kinematics we determined that the mass of the central black hole is 10^10 solar masses, more than 10 per cent of its bulge mass. I will present HST images and IFU spectroscopy of a dozen more compact galaxies that all appear to host extremely big black holes and have Salpeter-like IMFs. These local systems, with distances less than 100 Mpc, could be the passively evolved descendents of the quiescent compact nugget galaxies found at z~2 and the >10e9 Msun quasars that are found at z>6.
Abstract
Any viable theory of the formation and evolution of galaxies should be able to broadly account for the emergent properties of the galaxy population, and their evolution with time, in terms of fundamental physical quantities. Yet, when citing the key processes we believe to be central to the story, we often find ourselves listing from a vast and confusing melee of modelling strategies & numerical simulations, rather than appealing to traditional analytic derivations where the connections to the underlying physics are more tangible. By re-examining both complex models and recent observational surveys in the spirit of the classic theories, we will investigate to what extent the trends in the galaxy population can still be seen as an elegant fingerprint of cosmology and fundamental physics.
Abstract
The ΛCDM model predicts that galaxies originate in dark matter haloes, undergoing in their early age a process of continuous merges with other galaxies that determines the first part of their evolution. The frequency of these events decreases with time and their gradual change turns to be internally driven, becoming much slower. Bars, elongated stellar structures in the central regions of galaxies, are known to play an active role in this phase of their evolution, so-called secular.
Bars are fundamentally responsible for the redistribution of matter and the angular momentum of the baryonic and dark matter components of disc galaxies. Different simulations predict that bars get stronger and longer in time, slowing down their rotation speed.
Based on the Spitzer Survey of Stellar Structure in Galaxies (S4G) 3.6 μm imaging, we aim to study the secular evolution of disc galaxies by focusing on their stellar bar parameters. We take a large well-defined sample of about 650 nearby barred galaxies and we infer the gravitational potential from 3.6 μm images. We calculate gravitational torques, the ratio of the maximal tangential force to the mean axisymmetric radial force, in order to obtain a quantitative measure of the bar-induced perturbation strengths. In addition, we estimate the bar strength from the m=2 normalized Fourier density amplitudes and determine bar lengths both visually and by using an ellipse fitting method. Bar morphology and the interplay with spiral arms are studied via image-stacking methods as well.
In this talk I will present the statistical results derived from our measurements, providing observational evidence for the evolution of bars in accordance with the current theoretical predictions. We study bar parameters as a function of the Hubble type, addressing how the different measurements of the bar strength correlate with each other and with the galactic mass. The quality of our data allows us to probe the properties of bars in the Local Universe and connect them to the evolution of other galactic structures.
Abstract
DESI is a massively multiplexed fiber-fed spectrograph that will make the next
major advance in dark energy in the timeframe 2018-2022. On the Mayall
telescope, DESI will obtain spectra and redshifts for tens of millions of
galaxies and cuasars with 5,000 fiber postioner robots, constructing a
3-dimensional map spanning the nearby universe to 10 billion light years. DESI
is supported by the US Department of Energy Office of Science to perform this
Stage IV dark energy measurement using baryon acoustic oscillations and other
techniques that rely on spectroscopic measurements. Spain has a major role in
DESI with the construction of the Focal Plate and the development of the fiber
positioners. I will give an overview of the DESI science, instrument, and Spain
participation in the project.
Abstract
Two competing effects appear to govern galaxy multiplicity (pairs orgroups) at low masses: while associations of low-mass haloes are naturally expected in a LCDM cosmology, galaxy formation within these haloes is thought to be rendered inefficient due to the action of several ionizing agents. Yet associations of dwarf galaxies are known to exist in the Local Volume, and their frequency appears to be unexpectedly high for LCDM expectations even in our own Local Group. Unfortunately, it is not yet well understood what role do interactions between low-mass galaxies play in determining their star formation histories, structural properties, and neutral gas content. Here I will present an investigation of the impact of dwarf-dwarf galaxy tidal interactions on their morphological and star formation properties. The UGC5205 close pair consists of two low-mass (M* ~ 5E7 Msun), late-type galaxies with a relative projected distance of only 10 kpc, and no nearby massive companions. I will show that these equal-mass interactions can be an important 'pre-processing' mechanism that acts before dwarfs are affected by a more massive central galaxy, profoundly impacting their star formation histories and morphologies.
<< First « Newer 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Older » Last >>
Upcoming talks
- Weighting the Giants: The Study of Cored Early-Type Galaxies and Their Supermassive Black HolesDr. Bianca NeureiterTuesday December 10, 2024 - 12:30 GMT (Aula)
- Consejo InvestigadoresThursday December 12, 2024 - 10:00 GMT (Aula)