Found 5 talks width keyword Galactic bulge
Abstract
Abstract
To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.
To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.
Abstract
After placing the Gaia mission in the context of current astrophysical research, the astrometric, photometric, and spectroscopic data provided by the satellite, as presented in its third data archive, DR3, will be reviewed. Gaia third archive contains, in addition to the measurements from the satellite's instruments, an extensive set of astrophysical parameters derived by the DPAC data processing consortium, for stars, unresolved galaxies, and solar system objects. These parameters correspond to about 1.8 billion sources repeatedly observed by the satellite during the first 34 months of operation. In the case of the Milky Way stars, DR3 contains information for about 1% of its stars, which has made it possible, for the first time, to study the dynamics of the disk and the halo, and to reconstruct the tumultuous evolutionary history of our galaxy, which is etched in its halo. Studying the integrals of the motion and the orbital actions, some 15 episodes of accretion of other galaxies by our galaxy have been identified, which shows that our Galaxy is the result of billions of years of "galactic canibalism". Accretion phenomena and tidal current trails are frequently observed in other galaxies and show that our Universe evolves through a hierarchical formation of galaxies.
-------------------------------------------------
Meeting will be held online
Youtube: https://youtu.be/ns78Go3FM7I
Zoom: https://rediris.zoom.us/j/87455295473?pwd=dnd2SkppQ1F2UlN2K0FLbmlLZEFmZz09
Meeting ID: 874 5529 5473
Passcode: 941406
Abstract
The Milky Way (MW) galaxy is not much different from its faraway cousins. However, our position within the MW allows us to study the properties of its stellar populations with exquisite detail in comparison to extragalactic sources. The bulge of the MW (i.e. the stellar population within ~3 kpc from the Galactic center) is the most massive stellar component of the MW hosting very old stars (>10 Gyr), therefore the study of its stellar population properties can shed light on the formation and evolution of the MW as a whole, and of other spiral galaxies at large.
So far, there is a general consensus on the global kinematic, chemical and structural properties of the bulge populations, however the age, or rather, the distribution of the ages of the stars in the bulge is yet to be completely understood.
We aimed at addressing the questions 'How old is the bulge?' and 'Is there a spatial age gradient in the bulge?' through the determination of the stellar ages in the different fields sparsely distributed within a region of 300 deg² centered on the bulge.
We use images from the VISTA Variables in the Vía Láctea (VVV) survey, based in near infrared passbands, to extract accurate magnitude and color of half a billion stars in the bulge area using point spread function fitting.
The newly derived photometric catalogs, used in addition to probe the extinction towards the bulge, will be made publicly available to the entire community.
The contribution of the intervening disk population along the bulge lines of sight has been detected and removed by using a statistical approach in order to obtain a final stars sample that is representative of the bulge population only.
The determination of the stellar ages in different fields is provided through the comparison between the observations and synthetic stellar population models, which have been carefully tailored to account for the observational effects (i.e. distance dispersion, differential reddening, photometric completeness, photometric and systematic uncertainties).
The simulations leading to the construction of synthetic populations have been carried out by using two different methods: i) a model that uses a spectroscopically derived metallicity distribution functions as prior, leaving the age as the only free parameter; ii) a genetic algorithm that finds the best solution within all possible combinations of age and metallicity (i.e. uniform prior in age and metallicity using IAC-POP/Minniac suite).
We ultimately find that the bulge itself appears to be on average old (>9.5 Gyr) throughout its extension (|l| < 10° and -10° < b < +5°), with a mild gradient of about 0.16 Gyr/deg towards the Galactic center.
Abstract
Among the different effects of secular evolution of galaxies we find how bars influence enormously their host galaxies. For many years now, it is known how the evolution of bars will produce different boxy/peanut and X-shape bulges. In this context our Milky Way is an example of a boxy bulge, and we will present a self consistent N-body simulation of a barred galaxy that will be compared with some of the Milky Way available data. We will compare the model in terms of morphology and structure, kinematics and finally metallicity gradients.
« Newer Older »
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)