Found 17 talks width keyword dust

Oe00LDuJNfs-thumbnail
Tuesday April 18, 2023
University of Oxford

Abstract

 

Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.


yAt24_9X0ro-thumbnail
Thursday January 19, 2023
IAC

Abstract

I will review the status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a project led from the IAC with the aim of characterising the polarisation of the Cosmic Microwave Background (CMB) and other galactic or extragalactic physical processes that emit in microwaves in the frequency range 10-42GHz, and at large angular scales (1 degree resolution). QUIJOTE consists of two telescopes and three instruments operating from the Teide Observatory, and started operations about 10 years ago, in November 2012.

I will discuss the status of the project, and I will present the latest scientific results associated with the wide survey carried out with the first QUIJOTE instrument (MFI) at 11, 13, 17 and 19GHz, covering approximately 29000 deg$^2$ with polarisation sensitivities in the range of 35-40 $\mu$K/deg. These MFI maps provide the most accurate description we have of the polarization of the emission of the Milky Way in the microwave range, in a frequency domain previously unexplored by other experiments. These maps provide a unique view of the Galactic
magnetic field as traced by the synchrotron emission. These results have been presented in an initial series of 6 scientific articles published on January 12th, 2023.

Finally, I will describe the prospects for future CMB observations from the Teide Observatory.


9kPuzJMmNkM-thumbnail
Thursday July 25, 2019
University College London

Abstract

Until the advent in the late 1990’s of sensitive submillimetre arrays such as SCUBA, it was generally thought that the main sources for the interstellar dust found in galaxies were the dusty outflows from evolved AGB stars and M supergiants, although a dust contribution from supernovae had long been predicted on theoretical grounds. The detection at submillimetre wavelengths of very large dust masses in some high redshift galaxies emitting less than a billion years after the Big Bang led to a more serious consideration of core-collapse supernovae (CCSNe) from massive stars as major dust contributors. KAO and Spitzer mid-infrared observations confirmed that CCSN ejecta could form dust but it was not until the Herschel mission and subsequent ALMA observations that direct evidence has been obtained for the presence of significantly large masses of cold dust in young CCSN remnants. As well as using infrared spectral energy distributions to measure the amounts of dust forming in CCSN ejecta, dust masses can also be quantified from the analysis of red-blue asymmetries in their late-time optical emission line profiles. I will describe current results from these methods for estimating ejecta dust masses, and their implications.


OjSZgqOLKAw-thumbnail
Thursday January 15, 2015
IAC

Abstract

One of the important questions in extragalactic astronomy concerns the debate between nature and nurture scenarios. Are the observed galaxy local properties the end product of the different conditions at birth or the product of the interactions, or other local processes, since a galaxy is not an isolated object? In this talk I will present the results of the analysis of some galaxy properties, morphologies and mass functions, obtained comparing, for the first time in a consistent manner, galaxies in the widest range of environments at low redshift (groups, clusters, binary systems, isolated galaxies). The aim was to understand the most important factors that drive galaxy evolution, trying to disentangle the importance of galaxy mass and global environment.

In addition I will present the first results concerning the two projects in which I am involved at IAC: the ALBA project, aimed to explore the signs of a proto-cluster at z~6.5, and the analysis of dust emission of a sample of local tadpole galaxies. 


fE9x1a74k6k-thumbnail
Wednesday October 22, 2014
Vienna Univ.

Abstract

In order to understand galaxy formation it is crucial to obtain sensitive observations of the emission of dust and molecular gas both of which constrain the on-going star formation or AGN activity and the future potential of the galaxy to grow. Constraining the growth of ensemble of galaxies in the distant universe and not simply the most active ones, is one of the primary goals of current and planned (sub)mm facilities such as ALMA or SPICA. I will discuss two major questions in galaxy formation and assembly: 1) are dusty galaxies vigorously forming stars embedded within large scale structures at z>1.5; and 2) do dusty starbursts exist at the highest redshift. To shed light on these obscure topics, I will present our on-going observations of dust and molecular gas with a number of different (sub)mm facilities such as Herschel, APEX, IRAM or ALMA of one important star forming galaxy population in the distant universe: submillimeter selected galaxies (SMGs). My presentation will be complemented by our recently initiated census of the molecular gas reservoirs of nearby galaxies with optical IFU coverage. The local analogs serve as a reference sample for current and future studies of high-z galaxy populations.


sFoSvP9jweI-thumbnail
Tuesday May 20, 2014
CSIC

Abstract

Evolved stars are factories of cosmic dust. This dust is made of tiny grains that are injected into the interstellar medium and plays a key role in the evolution of astronomical objects from galaxies to the embryos of planets. However, the processes involved in dust formation and evolution are still a mystery. The increased angular resolution of the new generation of telescopes will provide for the first time a detailed view of the conditions in the dust formation zone of evolved stars, as shown by our first observations with ALMA. The aim of the NANOCOSMOS project is to take advantage of these new observational capabilities to change our view on the origin and evolution of dust. We will combine astronomical observations, modelling, and top-level experiments to produce stardust analogues in the laboratory and identify the key species and steps that govern the formation of these nanoparticles. We will build two innovative setups: the Stardust chamber to simulate dust formation in the atmosphere of evolved stars, and the gas evolution chamber to identify novel molecules in the dust formation zone. We will also improve existing laboratory setups and combine different techniques to achieve original studies on individual nanoparticles, their processing to produce complex polycyclic aromatic hydrocarbons, the chemical evolution of their precursors and their reactivity with abundant astronomical molecules. Our simulation chambers will be equipped with state-of-the-art in situ and ex situ diagnostics. Our astrophysical models, improved by the interplay between observations and laboratory studies, will provide powerful tools for the analysis of the wealth of data provided by the new generation of telescopes.

The synergy in NANOCOSMOS between astronomers, vacuum and microwave engineers, molecular and plasma physicists, surface scientists, including both experimentalists and theoreticians is the key to provide a cutting-edge view of cosmic dust.


CmG7hiuB8U8-thumbnail
Tuesday April 1, 2014
Indian Institute of Astrophysics

Abstract

R Coronae Borealis (RCB) stars are the more prominent group  of high luminosity hydrogen deficient stars that are rich in carbon  and helium. They also show characteristic irregular light drops of  several magnitudes (between 3 and 8 magnitudes) at unpredictable  times, caused by expulsion of self-made clouds of dust. They range in 
surface temperatures from 4500 K to  20000 K. Some of them seem to  have made even such complex molecules like fullerenes (C60) in their  circumstellar regions. Neither their evolutionary history nor the dust 
formation mechanism are well understood. Two scenarios that have been  suggested are that the present stars are a result of merger of two  white dwarfs (CO+He) or a post born-again (AGB) giant that is  surviving after a final helium shell flash. The talk would describe  the RCB properties and highlight the problems and challenges they pose 
in understanding their origins and dust production.


2QaFzB_UqiA-thumbnail
Tuesday July 30, 2013
Universidad de Concepción

Abstract

It is now clear that supermassive black holes (M>1e6 Msun) live in the center of most (all) galaxies, including our own Milky Way. Furthermore, the energy released during the growth of this black hole is a critical ingredient in understanding galaxy formation and evolution. In this talk, I will show what we know about how, when and where these supermassive black holes are acquiring their masses. In particular, I will focus on the effects of obscuration, as it is now clear that the majority of this black hole growth is hidden from our view by large amounts of gas and dust. I will present statistical evidence suggesting that while most nuclear activity is triggered by internal secular processes, the most violent episodes are linked to major galaxy mergers. Finally, I will show how future data obtained combining observations with the ALMA radio telescope and the NuSTAR X-ray observatory will allow us to understand the physical details of the connection between black hole growth and galaxy evolution.


9yCVLWvroHg-thumbnail
Thursday April 25, 2013
IAC

Abstract

How do the first galaxies form and evolve? Optical and near-infrared deep surveys are now finding galaxies at very high redshifts. However, they are typically small, not massive and present some but not very high star formation. But now the Herschel Multi-tiered Extragalactic Survey (HerMES), the largest project that has being carried out with the Herschel Space Observatory, in collaboration with other groups, has discovered a massive, maximum-starburst galaxy at a redshift of 6.34. The presence of galaxies like HFLS3 in the early Universe challenges current theories of galaxy fomation and evolution. I will describe the method we have developed to find these galaxies, the follow-up observations with different facilities and the main physical properties of this extreme object.


zkMYH6WosM4-thumbnail
Thursday November 22, 2012
IAC

Abstract

As astrophysicists, we are used to extracting physical information from the observations. The usual procedure is to propose a parametric physical model to explain the observations and use the observations to infer the values of the parameters. However, in our noisy and ambiguous universe, the solution to the inference problem is usually non-unique or diffuse. For this reason, it is important that our inversion techniques give reliable results. In this talk I present a few recent results (dusty tori of AGN, magnetic fields in central stars of planetary nebulae, oscillations of coronal loops, signal detection) in which our group is applying Bayesian ideas to extract information from the observations.


« Newer 1 | 2 Last >>